In this study, a different design of passive air Solar Chimney(SC)was tested by installing it in the south wall of insulated test room in Baghdad city. The SC was designed from vertical and inclined parts connected serially together, the vertical SC (first part) has a single pass and Thermal Energy Storage Box Collector (TESB (refined paraffin wax as Phase Change Material(PCM)-Copper Foam Matrix(CFM))), while the inclined SC was designed in single pass, double passes and double pass with TESB (semi refined paraffin wax with copper foam matrix) with selective working angle ((30o, 45o and 60o). A computational model was employed and solved by Finite Volume Method (FVM) to simulate the air induced through the test room by SC effect. The governing equation of Computational Fluid Dynamic (CFD) model was developed by the effective heat capacity method equation to describe the heat storage and release from PCM-CFM. Practical and computational Results referred to increase in thermal conductivity of the paraffin wax that supported by CFM than 10 times, while the ventilation effect is still active for hours after sun set amount. The maximum ventilation mass flow rate with TESB collector was 36.651 kg/hr., when the overall discharge coefficient equals 0.371. Also, the experimental results referred to the best working angle range 45~60o, while the highest approaching temperature (between air and collector) was appeared for the double passes flat plate collector. Results gave higher heat storage efficiency 47% when the maximum solar radiation 780 W/m2 at 12.00 pm, and the energy summation through duration of charging time was 18460 kJ. Double passes SC at 60o angle presented the highest efficiency with value approaching to 73%, while TESB collector efficiency depicted highest efficiency value 70% at 12:00 pm.
In this paper a comparison of the experimental of evacuated tube solar water heater systems with and without mirror flat reflector. The aim of using the reflector to improve thermal efficiency, and the data gathered which are (temperature, solar irradiation and time) for three days were compared. the results from compared data the temperature lower increase in evacuated tube solar water heater system without reflector than the temperature increase in evacuated tube solar water heater system with reflector .The results show (53, 39, 35) % for three days respectively that the evacuated tube solar water heater system with reflector has higher thermal efficiencies than the results (47, 28, 30) % for three days respectively thermal efficiencies
... Show MoreIn this paper, thermal performance of a zig-zig solar air heater (ZZSAH) with and without using steel wire mesh on the absorber plate of the collector is experimentally investigated. The experimental work includes four inclination angles of the collector 20o, 30o, 45o, and 60o and four air mass flow rates of 0.03, 0.04, 0.06, and 0.08 kg/s under varieties of operating conditions of a geographic location of Baghdad. New correlation equations of Nusselt number are obtained from experimental results for both types of collectors where the effect of varying of the inclination angle of collector taken into consideration in the experiment. The correlations show good agreement wi
... Show MoreA solar updraft tower power plant (solar tower) is a solar thermal power plant that utilizes a combination of solar
air collector and central updraft tube to generate an induced convective flow which drives pressure staged turbines to generate electricity.
This paper presents practical results of a prototype of a solar chimney with thermal mass, where the glass surface is replaced by transparence plastic cover. The study focused on chimney's basements kind effect on collected air temperatures. Three basements were used: concrete, black concrete and black pebbles basements. The study was conducted in Baghdad from August to November 2009.
The results show that the best chimney efficiency attaine
... Show MoreAn experimental investigation of natural convection heat transfer from an isothermal horizontal,vertical and inclined heated square flat plates with and without circular hole, were carried out in two cases, perforated plates without an impermeable adiabatic hole "open core" and perforated plates with an impermeable adiabatic hole "closed core" by adiabatic plug. The experiments covered the laminar region with a range of Rayleih number of (1.11x106 ≤RaLo≤4.39x106 ), at Prandtle number (Pr=0.7). Practical experiments have been done with variable inclination angles from horizon (Ф=0o ,45o,90o,135oand 180o),facing upward (0o≤Ф<90o), and downward (90o
≤Ф<180o). The results showed that the temperature gradient increases whi
Numerical simulations have been carried out on the solar chimney power plant systems. This paper gives the flow field analysis for a solar chimney power generation project located in Baghdad. The continuity, Naver-stockes, energy and radiation transfer equations have been solved and carried out by Fluent software. The governing equations are solved for incompressible, 3-D, steady state, turbulent is approximated by a standard k - model with Boussiuesq approximation to study and evaluate the performance of solar chimney power plant in Baghdad city of Iraq. The different geometric parameters of project are assumed such as collector diameter and chimney height at different working conditions of solar radiation intensity (300,450,600,750
... Show MoreA number of ehemical ion materials were used as an absorber against solar energy. These materials were selected according to their absorption spectra in the wavelength range 300-800nm where the solar spectrum is coventrated. A solar olleetorw^esigd and The ability of each material inside the collector for absorbing the solar radiation was examined by a converter parameter “R”.According to the “R” parameter, the cohaltous and copperic ions material seems to be of higher capability for absorbing solar energy than the other materials.All the results were analyzed by means of a least-squared fitting program.