In this study, a different design of passive air Solar Chimney(SC)was tested by installing it in the south wall of insulated test room in Baghdad city. The SC was designed from vertical and inclined parts connected serially together, the vertical SC (first part) has a single pass and Thermal Energy Storage Box Collector (TESB (refined paraffin wax as Phase Change Material(PCM)-Copper Foam Matrix(CFM))), while the inclined SC was designed in single pass, double passes and double pass with TESB (semi refined paraffin wax with copper foam matrix) with selective working angle ((30o, 45o and 60o). A computational model was employed and solved by Finite Volume Method (FVM) to simulate the air induced through the test room by SC effect. The governing equation of Computational Fluid Dynamic (CFD) model was developed by the effective heat capacity method equation to describe the heat storage and release from PCM-CFM. Practical and computational Results referred to increase in thermal conductivity of the paraffin wax that supported by CFM than 10 times, while the ventilation effect is still active for hours after sun set amount. The maximum ventilation mass flow rate with TESB collector was 36.651 kg/hr., when the overall discharge coefficient equals 0.371. Also, the experimental results referred to the best working angle range 45~60o, while the highest approaching temperature (between air and collector) was appeared for the double passes flat plate collector. Results gave higher heat storage efficiency 47% when the maximum solar radiation 780 W/m2 at 12.00 pm, and the energy summation through duration of charging time was 18460 kJ. Double passes SC at 60o angle presented the highest efficiency with value approaching to 73%, while TESB collector efficiency depicted highest efficiency value 70% at 12:00 pm.
The differential protection of power transformers appears to be more difficult than any type of protection for any other part or element in a power system. Such difficulties arise from the existence of the magnetizing inrush phenomenon. Therefore, it is necessary to recognize between inrush current and the current arise from internal faults. In this paper, two approaches based on wavelet packet transform (WPT) and S-transform (ST) are applied to recognize different types of currents following in the transformer. In WPT approach, the selection of optimal mother wavelet and the optimal number of resolution is carried out using minimum description length (MDL) criteria before taking the decision for the extraction features from the WPT tree
... Show MoreDielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show MoreTo determine the abilities of salivary E‐cadherin to differentiate between periodontal health and periodontitis and to discriminate grades of periodontitis.
E‐cadherin is the main protein responsible for maintaining the integrity of epithelial‐barrier function. Disintegration of this protein is one of the events associated with the destructive forms of periodontal disease leading to increase concentration of E‐cadherin in the oral biofluids.
A total of 63 patients with periodontitis (case) and 35
Carbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties en
... Show MoreThe increasing demand for energy has encouraged the development of renewable resources and environmentally benign fuel such as biodiesel. In this study, ethyl fatty esters (EFEs), a major component of biodiesel fuel, were synthesized from soybean oil using sodium ethoxide as a catalyst. By-products were glycerol and difatty acyl urea (DFAU), which has biological characteristics, as antibiotics and antifungal medications. Both EFEs and DFAU have been characterized using Fourier transform infrared (FTIR) spectroscopy, and 1H nuclear magnetic resonance (NMR) technique. The optimum conditions were studied as a function of reaction time, reactant molar ratios, catalyst percentage and the effect of organic solvents. The conversion ratio of soybea
... Show MoreMobile ad hoc network security is a new area for research that it has been faced many difficulties to implement. These difficulties are due to the absence of central authentication server, the dynamically movement of the nodes (mobility), limited capacity of the wireless medium and the various types of vulnerability attacks. All these factor combine to make mobile ad hoc a great challenge to the researcher. Mobile ad hoc has been used in different applications networks range from military operations and emergency disaster relief to community networking and interaction among meeting attendees or students during a lecture. In these and other ad hoc networking applications, security in the routing protocol is necessary to protect against malic
... Show MoreThe radial wave function R(r) and the radial distribution function P(r) as a function of (r), for the Hydrogen atom was calculated for several atomic state (1s,2s,2p,3s,3p,3d) The results were compared with Hydrogen like atom(He+,Li+2,Be+3).