This paper aims to evaluate the reliability analysis for steel beam which represented by the probability of Failure and reliability index. Monte Carlo Simulation Method (MCSM) and First Order Reliability Method (FORM) will be used to achieve this issue. These methods need two samples for each behavior that want to study; the first sample for resistance (carrying capacity R), and second for load effect (Q) which are parameters for a limit state function. Monte Carlo method has been adopted to generate these samples dependent on the randomness and uncertainties in variables. The variables that consider are beam cross-section dimensions, material property, beam length, yield stress, and applied loads. Matlab software has been adopted to generate these pseudo-random variables dependent on its statistical characteristics such as coefficient of variance and probability density function that gathered from a review of literatures.
In this study, gold nanoparticles were synthesized in a single step biosynthetic method using aqueous leaves extract of thymus vulgaris L. It acts as a reducing and capping agent. The characterizations of nanoparticles were carried out using UV-Visible spectra, X-ray diffraction (XRD) and FTIR. The surface plasmon resonance of the as-prepared gold nanoparticles (GNPs) showed the surface plasmon resonance centered at 550[Formula: see text]nm. The XRD pattern showed that the strong four intense peaks indicated the crystalline nature and the face centered cubic structure of the gold nanoparticles. The average crystallite size of the AuNPs was 14.93[Formula: see text]nm. Field emission scanning electron microscope (FESEM) was used to s
... Show MoreEffective decision-making process is the basis for successfully solving any engineering problem. Many decisions taken in the construction projects differ in their nature due to the complex nature of the construction projects. One of the most crucial decisions that might result in numerous issues over the course of a construction project is the selection of the contractor. This study aims to use the ordinal priority approach (OPA) for the contractor selection process in the construction industry. The proposed model involves two computer programs; the first of these will be used to evaluate the decision-makers/experts in the construction projects, while the second will be used to formul
Thin films of CuPc of various thicknesses (150,300 and 450) nm have been deposited using pulsed laser deposition technique at room temperature. The study showed that the spectra of the optical absorption of the thin films of the CuPc are two bands of absorption one in the visible region at about 635 nm, referred to as Q-band, and the second in ultra-violet region where B-band is located at 330 nm. CuPc thin films were found to have direct band gap with values around (1.81 and 3.14 (eV respectively. The vibrational studies were carried out using Fourier transform infrared spectroscopy (FT-IR). Finally, From open and closed aperture Z-scan data non-linear absorption coefficient and non-linear refractive index have been calculated res
... Show MoreMany of mechanical systems are exposed to undesired vibrations, so designing an active vibration control (AVC) system is important in engineering decisions to reduce this vibration. Smart structure technology is used for vibration reduction. Therefore, the cantilever beam is embedded by a piezoelectric (PZT) as an actuator. The optimal LQR controller is designed that reduce the vibration of the smart beam by using a PZT element.
In this study the main part is to change the length of the aluminum cantilever beam, so keep the control gains, the excitation, the actuation voltage, and mechanical properties of the aluminum beam for each length of the smart cantilever beam and observe the behavior and effec
... Show MoreIn this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr
... Show MoreThe effect of the concentration of the colloidal nanomaterial on their optical limiting behavior is reported in this paper. The colloids of sliver nanoparticles in deionized water were chemically prepared for the two concentrations (31 ppm and 11ppm). Two cw lasers (473 nm Blue DPSS laser and 532 nm Nd:YAG laser) are used to compare the optical limiting performance for the samples. UV–visible spectrophotometer, transmission electron microscope (TEM) and Fourier Transformation Infrared Spectrometer (FTIR) were used to obtain the characteristics of the sample. The nonlinear refractive index was calculated to be in the order of 10-9 cm2/W. The results demonstrate that the observed limiting response is significant for 532nm. In addition, t
... Show MoreIn practical engineering problems, uncertainty exists not only in external excitations but also in structural parameters. This study investigates the influence of structural geometry, elastic modulus, mass density, and section dimension uncertainty on the stochastic earthquake response of portal frames subjected to random ground motions. The North-South component of the El Centro earthquake in 1940 in California is selected as the ground excitation. Using the power spectral density function, the two-dimensional finite element model of the portal frame’s base motion is modified to account for random ground motions. A probabilistic study of the portal frame structure using stochastic finite elements utilizing Monte Carlo simulation
... Show MoreAbstract
This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine
... Show MoreThe study aims to clarify the impact of growth in the industrial sector on economic growth in the Iraqi economics according to the methodology of Kaldor for (2017-2030) , taking into consideration the effect of the accumulation of capital in the calculation of growth rates in the economy through productivity estimate of Total Factor Productivity (TFP) to growth in the economy, which is why the study assumes a formula to comply with the laws of Kaldor growth models developed requirements. This study is the most important to find out the development of the laws of Kaldor among Arabic studies, especially the first and third, so that the relationship between the growth of industrial production and economic growth as represented
... Show More