OpenStreetMap (OSM) represents the most common example of online volunteered mapping applications. Most of these platforms are open source spatial data collected by non-experts volunteers using different data collection methods. OSM project aims to provide a free digital map for all the world. The heterogeneity in data collection methods made OSM project databases accuracy is unreliable and must be dealt with caution for any engineering application. This study aims to assess the horizontal positional accuracy of three spatial data sources are OSM road network database, high-resolution Satellite Image (SI), and high-resolution Aerial Photo (AP) of Baghdad city with respect to an analogue formal road network dataset obtained from the Mayoralty of Baghdad (MB). The methodology of, U.S. National Standard Spatial Data Accuracy (NSSDA) was applied to measure the degree of agreement between each data source and the formal dataset (MB) in terms of horizontal positional accuracy by computing RMSE and NSSDA values. The study concluded that each of the three data sources does not agree with the MB dataset in both study sites AL-Aadhamiyah and AL-Kadhumiyah in terms of positional accuracy.
Tight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met
... Show MoreThe current research discusses the topic of the formal data within the methodological framework through defining the research problem, limits and objectives and defining the most important terms mentioned in this research. The theoretical framework in the first section addressed (the concept of the Bauhaus school, the philosophy of the Bauhaus school and the logical bases of this school). The second section dealt with (the most important elements and structural bases of the Bauhaus school) which are considered the most important formal data of this school and their implications on the fabrics and costumes design. The research came up with the most important indicators resulting from the theoretical framework.
Chapter three defined the
الحمدُ للهِ رب العالمين ، والصلاة والسلام على نبيه الأمين محمد r وعلى آله الطيبين الطاهرين ، وأصحابه الغر الميامين:
تعد الصورة السمعية مفهوما بيانيا نجده في البلاغة العربية واضحاً مؤثرا، مؤديا دورا جوهريا في إيصال الفكرة التي يروم الأديب إيصالها إلى المتلقي ولا تبدو السمعية واضحة إلاّ إذا نظر إليها في حالة أدبيه تهز كيان الشاعر  
... Show MoreAbstract
Nowadays, the adoption of economic unity on the accuracy of financial reporting is very important. Economic units need accurate financial reporting to be more competitive and to improve the performance. Management can also achieve financial information in real time through the application of ERP systems. This system will facilitate management to access the most up-to-date information such as planning, monitoring and evaluating the business processes of the organization to be more effective.
On the practical side, the Enterprise Resource Planning (ERP) system was applied to the General Company for Vegetable Oils to demonstrate a course in enhancing the accuracy of financial reporting.
... Show MoreIn this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.
Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show MoreWatermarking operation can be defined as a process of embedding special wanted and reversible information in important secure files to protect the ownership or information of the wanted cover file based on the proposed singular value decomposition (SVD) watermark. The proposed method for digital watermark has very huge domain for constructing final number and this mean protecting watermark from conflict. The cover file is the important image need to be protected. A hidden watermark is a unique number extracted from the cover file by performing proposed related and successive operations, starting by dividing the original image into four various parts with unequal size. Each part of these four treated as a separate matrix and applying SVD
... Show MoreAudio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show More