Preferred Language
Articles
/
joe-774
Modified W-LEACH Protocol in Wireless Sensor Network
...Show More Authors

In this paper, a Modified Weighted Low Energy Adaptive Clustering Hierarchy (MW-LEACH) protocol is implemented to improve the Quality of Service (QoS) in Wireless Sensor Network (WSN) with mobile sink node. The Quality of Service is measured in terms of Throughput Ratio (TR), Packet Loss Ratio (PLR) and Energy Consumption (EC). The protocol is implemented based on Python simulation. Simulation Results showed that the proposed protocol provides better Quality of Service in comparison with Weighted Low Energy Cluster Hierarchy (W-LEACH) protocol by 63%.

  

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Oct 01 2025
Journal Name
Civil Engineering Journal
Performance Evaluation of Composite CNT/PE-Modified Asphalt Concrete at Binder, Mixture, and Pavement Levels
...Show More Authors

Advancing the multi-scale performance of asphalt pavements requires innovative binder modifications that address limitations in rutting resistance, fatigue resistance, and durability across the binder, mixture, and structural levels. This study evaluates the performance of asphalt cement, mixtures, and pavement systems modified with a combination of polyethylene (PE) and carbon nanotubes (CNTs). The binder was modified using 4% PE and varying CNT contents (0.5%, 1%, 1.5%, and 2% by weight of the modified binder). Binder performance was assessed through conventional and rheological tests, including penetration, softening point, viscosity, performance grade (PG) evaluation, and master curve analysis. Mixture-level performance was eval

... Show More
View Publication
Crossref (1)
Scopus Crossref
Publication Date
Thu Jun 20 2024
Journal Name
Fizjoterapia Polska
Development Artificial Neural Network (ANN) computing model to analyses men's 100¬meter sprint performance trends
...Show More Authors

Coaches and analysts face a significant challenge of inaccurate estimation when analyzing Men's 100 Meter Sprint Performance, particularly when there is limited data available. This necessitates the use of modern technologies to address the problem of inaccurate estimation. Unfortunately, current methods used to estimate Men's 100 Meter Sprint Performance indexes in Iraq are ineffective, highlighting the need to adopt new and advanced technologies that are fast, accurate, and flexible. Therefore, the objective of this study was to utilize an advanced method known as artificial neural networks to estimate four key indexes: Accelerate First of 10 meters, Speed Rate, Time First of 10 meters, and Reaction Time. The application of artifi

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (4)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Sat Oct 29 2022
Journal Name
Current Trends In Geotechnical Engineering And Construction
Simulation Design and Performance of a Residential Complex Using Liquefied Petroleum Gas Network
...Show More Authors

The population has been trying to use clean energy instead of combustion. The choice was to use liquefied petroleum gas (LPG) for domestic use, especially for cooking due to its advantages as a light gas, a lower cost, and clean energy. Residential complexes are supplied with liquefied petroleum gas for each housing unit, transported by pipes from LPG tanks to the equipment. This research aims to simulate the design and performance design of the LPG system in the building that is applied to a residential complex in Baghdad taken as a study case with eight buildings. The building has 11 floors, and each floor has four apartments. The design in this study has been done in two parts, part one is the design of an LPG system for one building, an

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Mar 08 2015
Journal Name
All Days
Distribution of New Horizontal Wells by the Use of Artificial Neural Network Algorithm
...Show More Authors
Abstract<p>It is an established fact that substantial amounts of oil usually remain in a reservoir after primary and secondary processes. Therefore; there is an ongoing effort to sweep that remaining oil. Field optimization includes many techniques. Horizontal wells are one of the most motivating factors for field optimization. The selection of new horizontal wells must be accompanied with the right selection of the well locations. However, modeling horizontal well locations by a trial and error method is a time consuming method. Therefore; a method of Artificial Neural Network (ANN) has been employed which helps to predict the optimum performance via proposed new wells locations by incorporatin</p> ... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of The Mechanical Behavior Of Materials
Simulation and assessment of water supply network for specified districts at Najaf Governorate
...Show More Authors
Abstract<p>This study aims to simulate and assess the hydraulic characteristics and residual chlorine in the water supply network of a selected area in Al-Najaf City using WaterGEMS software. Field and laboratory work were conducted to measure the pressure heads and velocities, and water was sampled from different sites in the network and then tested to estimate chlorine residual. Records and field measurements were utilized to validate WaterGEMS software. Good agreement was obtained between the observed and predicted values of pressure with RMSE range between 0.09–0.17 and 0.08–0.09 for chlorine residual. The results of the analysis of water distribution systems (WDS) during maximum demand </p> ... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (43)
Crossref (39)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet Convolutional Neural Network Architecture with Cosine and Hamming Similarity/Distance Measures for Fingerprint Biometric Matching
...Show More Authors

In information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compare

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Mon Oct 13 2025
Journal Name
Mesopotamian Journal Of Cybersecurity
Improvement of the Face Recognition Systems Security Against Morph Attacks using the Developed Siamese Neural Network
...Show More Authors

Face Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to d

... Show More
View Publication Preview PDF
Scopus Crossref