Tests were performed on asphalt concrete specimens with (101.6 mm in diameter and 101.6 mm in height), and the results were implemented for calculating permanent deformation and resilient modulus under repeated compressive stress with different levels of stresses (0.068, 0.138 and 0.206) MPa at 40 ºC. Two types of additives namely (carbon black-asphalt) and (SBR-asphalt) were tried as rejuvenators with three percentages of (0.5, 1 and 1.5) % by weight of asphalt cement along with two ratios of AC (1 and 2) % have been implemented as rejuvenator and blended with the reclaimed asphalt concrete. Aged materials were obtained from the site. 100% Reclaimed Asphalt Pavement material from the reclaimed mixture is implemented. A set of (3) specimens were prepared for every mixture; three specimens were tested under (repeated compressive stress) at each level of stress. The objective of this work was to study the effect of two types of additives (Styrene-Butadiene-Rubber (SBR) and carbon black) on the performance of recycled asphalt concrete mixture. It was concluded that the Resilient modulus (Mr) at (0.138 and 0.206) MPa stress level decreases by (14, 22 and 8) % and (22, 34 and 11) for reclaimed and recycle mixtures with (carbon black-asphalt and SBR-asphalt) respectively when compared with that at 0.068 MPa. Permanent deformation for recycled mixtures with (carbon black-asphalt and SBR-asphalt) increased by (65.9, 4.54) %, (146.6, 27.2) % and (79, 5.5) % at level of stresses (0.068, 0.138 and 0.206) MPa respectively when compared to reclaimed mixture.
Today, the five Caspian riparian states on the shores of the Caspian Sea (Kazakhstan, Turkmenistan, Azerbaijan, Russia, and Iran) have become a front for ambitions and international and regional competition, especially in light of the features and characteristics that natural geography has endowed them with and their enjoyment of a group of economic and mineral wealth that are not optimally exploited so far which made it a strategic attraction area for international trends and interventions, especially Western ones. It is a battleground for major international companies aiming to monopolize promising industrial investments in order to impose control and influence on the region’s resources and economic wealth and thus impose their forei
... Show MoreInferential methods of statistical distributions have reached a high level of interest in recent years. However, in real life, data can follow more than one distribution, and then mixture models must be fitted to such data. One of which is a finite mixture of Rayleigh distribution that is widely used in modelling lifetime data in many fields, such as medicine, agriculture and engineering. In this paper, we proposed a new Bayesian frameworks by assuming conjugate priors for the square of the component parameters. We used this prior distribution in the classical Bayesian, Metropolis-hasting (MH) and Gibbs sampler methods. The performance of these techniques were assessed by conducting data which was generated from two and three-component mixt
... Show MoreThe study presents the performance of flexural strengthening of concrete members exposed to partially unbonded prestressing with a particular emphasis on the amount (0, 14.2, and 28.5%) of cut strands-symmetrical and asymmetrical damage. In addition to examining the influence of cut strands on the remaining capacity of post-tensioned unbonded members and the effectiveness of carbon fiber reinforced polymer laminates restoration, The investigated results on rectangular members subjected to a four-point static bending load based on the composition of the laminate affected the stress of the CFRP, the failure mode, and flexural strength and deflection are covered in this study. The experimental results revealed that the usage of CFRP la
... Show MoreIn this study, the flexural performance of a new composite beam–slab system filled with concrete material was investigated, where this system was mainly prepared from lightweight cold-formed steel sections of a beam and a deck slab for carrying heavy floor loads as another concept of a conventional composite system with a lower cost impact. For this purpose, seven samples of a profile steel sheet–dry board deck slab (PSSDB/PDS) carried by a steel cold-formed C-purlins beam (CB) were prepared and named “composite CBPDS specimen”, which were tested under a static bending load. Specifically, the effects of the profile steel sheet (PSS) direction (parallel or perpendicular to the span of the specimen) using different C-purlins c
... Show MoreSeveral stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti
... Show MoreThis paper presents an experimental study for strengthening existing columns against axial compressive loads. The objective of this work is to study the behavior of concrete square columns strengthening with circulation technique. In Iraq, there are significantly more reinforced rectangular and square columns than reinforced circular columns in reinforced concrete buildings. Moreover, early research studies indicated that strengthening of rectangular or square columns using wraps of CFRP (Carbon Fiber Reinforced Polymer) provided rather little enhancement to their load-carrying capacity. In this paper, shape modification technique was performed to modify the shape (cross section) of the columns from square columns into circular colu
... Show MoreConcrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into
... Show MoreCastellated columns are structural members that are created by breaking a rolled column along the center-line by flame after that rejoining the equivalent halves by welding such that for better structural strength against axial loading, the total column depth is increased by around 50 percent. The implementation of these institutional members will also contribute to significant economies of material value. The main objectives of this study are to study the enhancement of the load-carrying capacity of castellated columns with encasement of the columns by Reactive Powder Concrete (RPC) and lacing reinforcement, and serviceability of the confined castellated columns. The Castellated columns with RPC and Lacing Reinforcement improve com
... Show MoreThe design of reinforced concrete spread foundations mainly depends on soil bearing capacity, loading value, and column size. So for each design case, tiresome calculations and time consumption are needed. In this paper, generalized design charts are presented and plotted according to derivations based on the ACI 318 M-2019 Code. These charts could be used directly by the structural designers to estimate the column size, foundation thickness, and dimensions as well as the foundation reinforcement under a certain given concentric load assuming a uniformly distributed contact pressure underneath the foundation. Of noteworthy, these charts are oriented to deal with square isolated footings with a square concentric column, covering reasonable r
... Show MoreA novel demountable shear connector for precast steel‐concrete composite bridges is presented. The connector uses high‐strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents slip of bolts within their holes. Moreover, the connector promotes accelerated construction and overcomes typical construction tolerances issues of precast structures. Most importantly, the connector allows bridge disassembly, and therefore, can address different bridge deterioration scenarios with minimum disturbance to traffic flow, i.e. (i) precast deck panels can be rapidly uplifted and replaced; (ii) connectors can be rapidly removed and replaced; and (iii) steel beams can b
... Show More