Preferred Language
Articles
/
joe-741
CFD Application on Shell and Double Concentric Tube Heat Exchanger
...Show More Authors

This work is concerned with the design and performance evaluation of a shell and double concentric tubes heat exchanger using Solid Works and ANSY (Computational Fluid Dynamics).

Computational fluid dynamics technique which is a computer-based analysis is used to simulate the heat exchanger involving fluid flow, heat transfer. CFD resolve the entire heat exchanger in discrete elements to find: (1) the temperature gradients, (2) pressure distribution, and (3) velocity vectors.  The RNG k-ε model of turbulence is used to determining the accurate results from CFD.

The heat exchanger design for this work consisted of a shell and eight double concentric tubes. The number of inlets are three and that of outlets are also three for all the fluids that pass through the heat exchanger.

A comparison was made for the numerical and experimental results and it was found that the percentage error for the hot oil outlet temperature was (6.8%) and the percentage error was (- 21%) for cold water outlet temperature.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 15 2020
Journal Name
International Journal Of Energy Research
Effect of airflow channel arrangement on the discharge of a composite metal foam‐phase change material heat exchanger
...Show More Authors

View Publication
Scopus (41)
Crossref (36)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Applied Energy
Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system
...Show More Authors

View Publication
Scopus (257)
Crossref (242)
Scopus Clarivate Crossref
Publication Date
Sun Apr 30 2017
Journal Name
Journal Of Engineering
Experimental Study on Heat Transfer and Friction Factor Characteristics of Single Layer Graphene Based DI-water Nanofluid in a Circular Tube under Laminar Flow and Different Heat Fluxes as Boundary Conditions
...Show More Authors

An experimental study was performed to estimate the forced convection heat transfer performance and the pressure drop of a single layer graphene (GNPs) based DI-water nanofluid in a circular tube under a laminar flow and a uniform heat flux boundary conditions. The viscosity and thermal conductivity of nanofluid at weight concentrations of (0.1 to 1 wt%) were measured. The effects of the velocity of flow, heat flux and nanoparticle weight concentrations on the  enhancement of the heat transfer are examined. The Nusselt number of the GNPs nanofluid was enhanced as the heat flux and the velocity of flow rate  increased, and the maximum Nusselt number  ratio (Nu nanofluid/ Nu base fluid)   and thermal performance factor

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Computational Design And Engineering
CFD analysis of phase-change material-based heat storage with dimple-shaped fins: evaluation of fin configuration and distribution pattern
...Show More Authors
Abstract<p>Phase-change materials (PCMs) have a remarkable potential for use as efficient energy storage means. However, their poor response rates during energy storage and retrieval modes require the use of heat transfer enhancers to combat these limitations. This research marks the first attempt to explore the potential of dimple-shaped fins for the enhancement of PCM thermal response in a shell-and-tube casing. Fin arrays with different dimensions and diverse distribution patterns were designed and studied to assess the effect of modifying the fin geometric parameters and distribution patterns in various spatial zones of the physical domain. The results indicate that increasing the number of </p> ... Show More
View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Heat Transfer Analysis of Conventional Round Tube and Microchannel Condensers in Automotive Air Conditioning System
...Show More Authors

In this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jul 21 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Numerical Study of the Heat Transfer Behavior in Helical Microcoil Tube
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Energy Conversion And Management
Improved PCM melting in a thermal energy storage system of double-pipe helical-coil tube
...Show More Authors

View Publication
Scopus (126)
Crossref (112)
Scopus Clarivate Crossref
Publication Date
Sat Oct 09 2021
Journal Name
Nanomaterials
Investigation of Heat Transfer Enhancement in a Triple Tube Latent Heat Storage System Using Circular Fins with Inline and Staggered Arrangements
...Show More Authors

Inherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phase-change materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit,

... Show More
View Publication Preview PDF
Scopus (39)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Tue Nov 09 2021
Journal Name
Energies
Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement
...Show More Authors

The solidification process in a multi-tube latent heat energy system is affected by the natural convection and the arrangement of heat exchanger tubes, which changes the buoyancy effect as well. In the current work, the effect of the arrangement of the tubes in a multi-tube heat exchanger was examined during the solidification process with the focus on the natural convection effects inside the phase change material (PCM). The behavior of the system was numerically analyzed using liquid fraction and energy released, as well as temperature, velocity and streamline profiles for different studied cases. The arrangement of the tubes, considering seven pipes in the symmetrical condition, are assumed at different positions in the system, i

... Show More
View Publication
Scopus (13)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Mon Mar 15 2021
Journal Name
Energies
Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System
...Show More Authors

A twisted-fin array as an innovative structure for intensifying the charging response of a phase-change material (PCM) within a shell-and-tube storage system is introduced in this work. A three-dimensional model describing the thermal management with charging phase change process in PCM was developed and numerically analyzed by the enthalpy-porosity method using commercial CFD software. Efficacy of the proposed structure of fins for performing better heat communication between the active heating surface and the adjacent layers of PCM was verified via comparing with conventional longitudinal fins within the same design limitations of fin material and volume usage. Optimization of the fin geometric parameters including the pitch, numb

... Show More
View Publication Preview PDF
Scopus (50)
Crossref (47)
Scopus Clarivate Crossref