Preferred Language
Articles
/
joe-740
Design of New Hybrid Neural Structure for Modeling and Controlling Nonlinear Systems
...Show More Authors

This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number of epoch, minimum number of neurons in the hybrid network, high accuracy in the output without oscillation response as well as useful model for a one step ahead prediction controller for the nonlinear CSTR system that is used in the MATLAB simulation.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A new Technique For Solving Fractional Nonlinear Equations By Sumudu Transform and Adomian Decomposition Method
...Show More Authors

A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (32)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model
...Show More Authors

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Relative intensity distribution in the rotational structure for B1Σ+- A1Π and B1Σ+- X1Σ+ electronic systems of BeO molecule
...Show More Authors

Theoretical spectroscopic study of  Beryllium Oxide has been carried out, Boltzmann distribution of P, Q and R branches in the range of (0<J<13) at temperature 4200K for (0-0) band for electronic transitions B1Σ+-A1Π and B1Σ-X1Σ. The Boltzmann distribution of these branches has a maximum values at equal J approximately while the values of relative population are different. For the B1Σ+- X1Σ+ transition the branch's lines extend towards lower wavenumber. This is because (Bv'-Bv") value is negative, i.e  Bv'< Bv" For B1Σ+-A1Π

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model
...Show More Authors

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for New COVID-19 Cases Using Recurrent Neural Networks and Long-Short Term Memory
...Show More Authors

     This research aims to predict new COVID-19 cases in Bandung, Indonesia. The system implemented two types of deep learning methods to predict this. They were the recurrent neural networks (RNN) and long-short-term memory (LSTM) algorithms. The data used in this study were the numbers of confirmed COVID-19 cases in Bandung from March 2020 to December 2020. Pre-processing of the data was carried out, namely data splitting and scaling, to get optimal results. During model training, the hyperparameter tuning stage was carried out on the sequence length and the number of layers. The results showed that RNN gave a better performance. The test used the RMSE, MAE, and R2 evaluation methods, with the best numbers being  0.66975075, 0.470

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Design and Analysis of New Prosthetic Foot.
...Show More Authors

There is a variety of artificial foot designs variable for use with prosthetic legs . Most of the design can be divided into two classes, articulated and non-articulated feet. one common non-articulated foot is the SACH . The solid ankle cushion heel foot referred to as the SACH foot has a rigid keel .

One key or the key factor in designing a new prosthesis is in the analysis of a patients response .

 This view is the most important because if the foot does not provide functional , practical or cosmetically acceptable characteristics the patient will not feel comfortable with the prosthesis , therefore design and manufacturing a new foot is essential, this foot made from polyethylene, its different shape and characte

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 01 2021
Journal Name
Chaos, Solitons &amp; Fractals
Modeling and analysis of an SI1I2R epidemic model with nonlinear incidence and general recovery functions of I1
...Show More Authors

In this paper, we established a mathematical model of an SI1I2R epidemic disease with saturated incidence and general recovery functions of the first disease I1. Considering the basic reproduction number, we obtained conditions for both disease-free and co-existing cases. The equilibrium points local stability is verified by using the Routh-Hurwitz criterion, while for the global stability, we used a suitable Lyapunov function to analyze the endemic spread of the positive equilibrium point. Moreover, we carried out the local bifurcation around both equilibrium points (disease-free and co-existing), where we obtained that the disease-free equilibrium point undergoes a transcritical bifurcation. We conduct numerical simulations that suppo

... Show More
View Publication
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
DESIGN OF A VARIABLE GAIN NONLINEAR FUZZY CONTROLLER AND PERFORMANCE ENHANCEMENT DUE TO GAIN VARIATION
...Show More Authors

In this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.

View Publication Preview PDF
Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref