In this research a local adsorbent was prepared from waste tires using two-step pyrolysis method. In the carbonization process, nitrogen gas flow rate was 0.2L/min at carbonization temperature of 500ºC for 1h. The char products were then preceded to the activation process at 850°C under carbon dioxide (CO2) activation flow rate of 0.6L/min for 3h. The activation method produced local adsorbent material with a surface area and total pore volume as high as 118.59m2 /g and 0.1467cm3/g, respectively. The produced . local adsorbent (activated carbon) was used for adsorption of lead from aqueous solution. The continuous fixed bed column experiments were conducted. The adsorption capacity performance of prepared activated carbons in this work was investigated. The results in this study indicated that the produced activated carbon from waste tires was an attractive adsorbent for removal of lead from aqueous solutions. The optimum values of bed height, flow rate, initial concentration and particle size were found to be 0.04m, flow rate 1L/h, initial concentration 0.5mg/L and particle diameter 0.5mm, respectively.
For this research, the utilisation of electrocoagulation (EC) toremove theciprofloxacin (CIP) and levofloxacin (LVX) from aqueous solutions was examined. The effective removal efficiencies are 93.47% for CIP and 88.00% for LVX, under optimum conditions. The adsorption isotherm models with suitable mechanisms were applied to determine the elimination of CIP and LVX utilizingtheEC method. Thefindingsshowed the adsorption of CIP and LVX on iron hydroxide flocs followed the Sips isotherm, with correlation coefficient values (R2) of 0.939 and 0.937. Threekinetic models were reviewed to determine the accurate CIP and LVX elimination methods using the EC method. The results showed that itfittedfor the second-order model, which indicated that the c
... Show MoreAbstract : A research was conducted to study the process parameters affecting hexavalent chromium Cr (VI) (carcinogenic compound) the removal percentage from the electrical industries company waste water that contain 88 mg/l of Cr (VI) concentration by adsorption onto tea wastes. Synthetic water with 88 mg/l Cr (VI) concentration was used. Several operation parameters affecting Cr (VI) removal efficiency were investigated, such as pH, initial Cr (VI) concentration, stirring time and tea wastes dose. The experimental results reveal that maximum Cr (VI) removal reached up to 94.26% at pH of 2, stirring time of 180 minute, tea wastes do
... Show MoreRelease of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreThe objective of this study was to isolate and identify the asparaginase-producing bacteria, then purify and characterize the enzyme in order to investigate their properties in the future. Fifteen local bacterial isolates were isolated from various sites in the city of Baghdad, identified by conventional morphological and biochemical procedures, and confirmed using vitek 2 methods, and submitted to primary screening processes for asparaginase production. For secondary screening, eight isolates with the greatest yellow zone ability on a specific solid medium were chosen. Bacillus sp. was reported to have the highest enzyme production (7.5 U/mg proteins). After 24 hours of incubation, submerged fermentation yielded optimal conditi
... Show MoreThe present study dealt with the removal of methylene blue from wastewater by using peanut hulls (PNH) as adsorbent. Two modes of operation were used in the present work, batch mode and inverse fluidized bed mode. In batch experiment, the effect of peanut hulls doses 2, 4, 8, 12 and 16 g, with constant initial pH =5.6, concentration 20 mg/L and particle size 2-3.35 mm were studied. The results showed that the percent removal of methylene blue increased with the increase of peanut hulls dose. Batch kinetics experiments showed that equilibrium time was about 3 hours, isotherm models (Langmuir and Freundlich) were used to correlate these results. The results showed that the (Freundlich) model gave the best fitting for adsorption capacity. D
... Show MoreThis study is to investigate the possibility of using activated carbon prepared from Iraqi date-pits (ADP) which are produced from palm trees (Phoenix dactylifera L.) as low-cost reactive material in the permeable reactive barrier (PRB) for treating lead (Pb<sup>+2</sup>) from the contaminated groundwater, and then compare the results experimentally with other common reactive materials such as commercial activated carbon (CAC), zeolite pellets (ZP). Factors influencing sorption such as contact time, initial pH of the solution, sorbent dosage, agitation speed, and initial lead concentration has been studied. Two isotherm models were used for the description of sorption data (Langmuir and Freundlich). The maximum lead sorp
... Show MoreIn the recent years the research on the activated carbon preparation from agro-waste and byproducts have been increased due to their potency for agro-waste elimination. This paper presents a literature review on the synthesis of activated carbon from agro-waste using microwave irradiation method for heating. The applicable approach is highlighted, as well as the effects of activation conditions including carbonization temperature, retention period, and impregnation ratio. The review reveals that the agricultural wastes heated using a chemical process and microwave energy can produce activated carbon with a surface area that is significantly higher than that using the conventional heating method.