In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking desired voltage and less energy consumption through investigating and comparing under random current variations with the minimum number of fitness evaluation less than 20 iterations.
Tracking moving objects is one of a very important applications within the computer vision. The goal of object tracking is segmenting a region of interest from a video scene and keeping track of its motion and positioning. Track moving objects used in many applications such as video surveillance, robot vision, and traffic monitoring, and animation. In this paper a four-wheeled robotic system have been designed and implemented by using Arduino-Uno microcontroller. Also a useful algorithms have been developed to detect and track objects in real time. The main proposed algorithm based on the kernel based color algorithm and some geometric properties to tracking color object. Robotic system is a compromise of two principal parts which are th
... Show MoreIn this study, a novel application of lab-scale dual chambered air-cathode microbial fuel cell (MFC) has been developed for simultaneous bio-treatment of real pharmaceutical wastewater and renewable electricity generation. The microbial fuel cell (MFC) was provided with zeolite-packed anodic compartment and a cation exchange membrane (CEM) to separate the anode and cathode. The performance of the proposed MFC was evaluated in terms of COD removal and power generation based on the activity of the bacterial consortium in the biofilm mobilized on zeolite bearer. The MFC was fueled with real pharmaceutical wastewater having an initial COD concentration equal to 800 mg/L and inoculated with anaerobic aged sludge. Results demo
... Show MoreThe choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests.
The electrode in the microbial fuel cell has a significant effect on cell performance. The treatment of the electrode is a crucial step to make the electrode surface more habitable for bacteria growth, thus, increases the power production as well as waste treatment. In the current study, two graphite electrodes were treated by a microwave. The first electrode was treated with 100W microwave energy, while the second one was treated with 600W microwave energy. There is a significant enhancement in the surface of the graphite anode after the pretreatment process. The results show an increase in the power density from 10 mW/m2 to 15 mW/m2 with 100w treatment and to 13.47 mW/m2 with 600w treatment. An organic
... Show MoreIn this study, a mathematical model for the kinetics of solute transport in liquid membrane systems (LMSs) has been formulated. This model merged the mechanisms of consecutive and reversible processes with a “semi-derived” diffusion expression, resulting in equations that describe solute concentrations in the three sections (donor, acceptor and membrane). These equations have been refined into linear forms, which are satisfying in the special conditions for simplification obtaining the important kinetic constants of the process experimentally.
Abstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show MoreA Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show MoreSliding Mode Controller (SMC) is a simple method and powerful technique to design a robust controller for nonlinear systems. It is an effective tool with acceptable performance. The major drawback is a classical Sliding Mode controller suffers from the chattering phenomenon which causes undesirable zigzag motion along the sliding surface. To overcome the snag of this classical approach, many methods were proposed and implemented. In this work, a Fuzzy controller was added to classical Sliding Mode controller in order to reduce the impact chattering problem. The new structure is called Sliding Mode Fuzzy controller (SMFC) which will also improve the properties and performance of the classical Sliding Mode control
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).