In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking desired voltage and less energy consumption through investigating and comparing under random current variations with the minimum number of fitness evaluation less than 20 iterations.
End of the twentieth century witnessed by the technological evolution Convergences between the visual arts aesthetic value and objective representation of the image in the composition of the design of the fabric of new insights and unconventional potential in atypical employment. It is through access to the designs of modern fabrics that address the employment picture footage included several scenes footage from the film, which focuses on research and analytical as a study to demonstrate the elements of the picture and the organization of its rules and how to functioning in the design of fabrics, Thus, it has identified the problem by asking the following: What are the elements of the picture footage and how the functioning of the struct
... Show MoreIn this paper, two new simple, fast and efficient block matching algorithms are introduced, both methods begins blocks matching process from the image center block and moves across the blocks toward image boundaries. With each block, its motion vector is initialized using linear prediction that depending on the motion vectors of its neighbor blocks that are already scanned and their motion vectors are assessed. Also, a hybrid mechanism is introduced, it depends on mixing the proposed two predictive mechanisms with Exhaustive Search (ES) mechanism in order to gain matching accuracy near or similar to ES but with Search Time ST less than 80% of the ES. Also, it offers more control capability to reduce the search errors. The experimental tests
... Show MoreThe proton momentum distributions (PMD) and the elastic
electron scattering form factors F(q) of the ground state for some
even mass nuclei in the 2p-1f shell for 70Ge, 72Ge, 74Ge and 76Ge are
calculated by using the Coherent Density Fluctuation Model (CDFM)
and expressed in terms of the fluctuation function (weight function)
|F(x)|2. The fluctuation function has been related to the charge
density distribution (CDD) of the nuclei and determined from the
theory and experiment. The property of the long-tail behavior at high
momentum region of the proton momentum distribution has been
obtained by both the theoretical and experimental fluctuation
functions. The calculated form factors F (q) of all nuclei under s
Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreSeawater might serve as a fresh‐water supply for future generations to help meet the growing need for clean drinking water. Desalination and waste management using newer and more energy intensive processes are not viable options in the long term. Thus, an integrated and sustainable strategy is required to accomplish cost‐effective desalination via wastewater treatment. A microbial desalination cell (MDC) is a new technology that can treat wastewater, desalinate saltwater, and produce green energy simultaneously. Bio‐electrochemical oxidation of wastewater organics creates power using this method. Desalination and the creation of value‐added by‐products are expected because of this ionic mov
Coaxial (wire-cylinder) electrodes arrangements are widely used for electrostatic deposition of dust particles in flue gases, when a high voltage is applied to electrodes immersed in air and provide a strongly non-uniform electric field. The efficiency of electrostatic filters mainly depends on the value of the applied voltage and the distribution of the electric field. In this work, a two-dimensional computer simulation was constructed to study the effect of different applied voltages (20, 22, 25, 26, 28, 30 kV) on the inner electrode and their effect on the efficiency of the electrostatic precipitator. Finite Element Method (FEM) and COMSOL Multiphysics software were used to simulate the cross section of a wire cylinder. The results sh
... Show More<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show More