Preferred Language
Articles
/
joe-729
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model
...Show More Authors

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking desired voltage and less energy consumption through investigating and comparing under random current variations with the minimum number of fitness evaluation less than 20 iterations.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Ieee Transactions On Network Science And Engineering
A Resource Allocation Mechanism for Cloud Radio Access Network Based on Cell Differentiation and Integration Concept
...Show More Authors

View Publication
Crossref (15)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Transactions On Power Delivery
Optimal Dielectric Design of Medium Voltage Toroidal Transformer with Electrostatic Shield under Fast Front Excitation
...Show More Authors

Accurate calculation of transient overvoltages and dielectric stresses from fast-front excitations is required to obtain an optimal dielectric design of power components subjected to these conditions, which are commonly due to switching and lightning, as well as utilization of power-electronic devices. Toroidal transformers are generally used at the low voltage level. However, recent investigations and developments have explored their use at the medium voltage level. This paper analyzes the model-based improvement of the insulation design of medium voltage toroidal transformers. Lumped and distributed parameter models are used and compared to predict the transient response and dielectric stress along the transformer winding. The parameters

... Show More
Scopus Clarivate Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Ieee Transactions On Intelligent Transportation Systems
Real-Time Intersection-Based Segment Aware Routing Algorithm for Urban Vehicular Networks
...Show More Authors

High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination

... Show More
View Publication
Scopus (68)
Crossref (61)
Scopus Clarivate Crossref
Publication Date
Tue Mar 25 2014
Journal Name
Sensors
Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects
...Show More Authors

View Publication
Scopus (38)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Tue Jun 27 2023
Journal Name
Chemphyschem
Predicting a New Δ‐Proton Sponge‐Base of 4,12‐Dihydrogen‐4,8,12‐triazatriangulene through Proton Affinity, Aromatic Stabilization Energy, and Aromatic Magnetism
...Show More Authors
Abstract<p>Herein, we report designing a new Δ (delta‐shaped) proton sponge base of 4,12‐dihydrogen‐4,8,12‐triazatriangulene (compound <bold>1</bold>) and calculating its proton affinity (<italic>PA</italic>), aromatic stabilization, natural bond orbital (NBO), electron density <italic>ρ</italic>(r), Laplacian of electron density ∇<sup>2</sup><italic>ρ</italic>(r), (2D‐3D) multidimensional <italic>off</italic>‐nucleus magnetic shielding (<italic>σ</italic><sub>zz</sub>(r) and <italic>σ</italic><sub>iso</sub>(r)), and scanning nucleus‐independent chemical shift (NICS<sub>zz</sub> and</p> ... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Jan 25 2018
Journal Name
International Journal Of Current Engineering And Technology
Model-Based Design of Piezoelectric Patches used to Repair Damaged Beams under Static Load
...Show More Authors

Static loads exposing to mechanical components can cause cracks, which are lead to form stress concentration regions causing the failure of structure. Generally, from 80% to 90% of structure failure is due to initiation of the cracks. Therefore, it is necessary to repair the crack and reduce its effect on the structure where the effect of the crack is modelled as an additional flexibility to the structure. In the last few years, piezoelectric materials have been considered as one of the most favourable repairing techniques. The piezoelectric material converts the applied voltage on it to a bending moment to counter the bending moment caused by the external load on the beam at the crack location. In this study, the design of the piez

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 03 2024
Journal Name
Proceedings Of Ninth International Congress On Information And Communication Technology
Offline Signature Verification Based on Neural Network
...Show More Authors

The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o

... Show More
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Ecological Engineering
Contaminants Removal from Real Refinery Wastewater Associated with Energy Generation in Microbial Fuel Cell
...Show More Authors

View Publication
Scopus (21)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Recognizing Different Foot Deformities Using FSR Sensors by Static Classification of Neural Networks
...Show More Authors

Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON
...Show More Authors

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re

... Show More
Preview PDF
Scopus (1)
Scopus