The presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant. The impact of voltage values was chosen as 6, 10, and 14 Volts. On increasing voltage dyes, removals increased significantly. The higher removal efficiency of dyes (99.9%) was achieved at (30) minutes for (Al/Al) electrodes at pH 6.5-7 and voltage 14 Volts. The results showed that the best amount of sodium chloride was found to be 600 ppm in dyes, voltage of 14 Volts, and best gap between the electrodes as 0.5 cm.
We studied the effect of certain environmental conditions for removing heavy metal elements from contaminated aqueous solutions (Cd, Cu, Pb, Fe, Zn, Ni, Cr) using the bacterium Bacillus subtilis to appoint the optimal conditions for removal ,The best optimum temperature range for two isolate was 30-35○C while the hydrogen number for the maximum mineral removal range was 6-7. The best primary mineral removal was 100 mg/L, while the maximum removal for all minerals was obtained after 6 hrs of Cu element time and the maximum removal efficiency was obtained after 24 hrs of Cu element. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/minute. Inoculums of 5ml/100ml which contained 1
... Show MoreThis research presents a study for precipitating phosphorus (as phosphate ion) from simulated wastewater (5ppm initial concentration of phosphorus) using calcium hydroxide Ca(OH)2 solution. The removal of phosphorus by Ca (OH)2 solution is expected to be very effective since the chemical reaction is of acid-base type but Ca(OH)2 forms complex compound with phosphate ions called. Hydroxyapatite Ca5 (PO4)3OH. hydroxyapatite is slightly soluble in water. This research was directed towards sustainable elements as phosphorus. Kinetics of the dissolution reaction of hydroxyapatite was investigated to find the best factors to recover phosphorus. The effect of con
... Show MoreThis work aims to provide a statistical analysis of metal removal during the Magnetic Abrasive Finishing process (MAF) and find out the mathematical model which describes the relationship between the process parameters and metal removal, also estimate the impact of the parameters on metal removal. In this study, the single point incremental forming was used to form the truncated cone made of low carbon steel (1008-AISI) based on the Z-level tool path. Then the finishing was accomplished using a magnetic abrasive process based on the Box-Behnken design of the experiment using Minitab 17 software was used to finish the surface of the formed truncated cone. The influences of different parameters (feed rate, machining step s
... Show MoreIn this study, manganese dioxide (MnO₂) nanoparticles (NPs) were synthesized via the hydrothermal method and utilized for the adsorption of Janus green dye (JG) from aqueous solutions. The effects of MnO₂ NPs on kinetics and diffusion were also analyzed. The synthesized NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and Fourier-transform infrared spectroscopy (FT-IR), with XRD confirming the nanoparticle size of 6.23 nm. The adsorption kinetics were investigated using three models: pseudo-first-order (PFO), pseudo-second-order (PSO), and the intraparticle diffusion model. The PSO model provided the best fit (R² = 0.999), indicating that the adsorpti
... Show More
