The effect of air injection device on the performance of airlift pump used for water pumping has been studied numerically and experimentally. An airlift pump of dimensions 42mm diameter and 2200 mm length with conventional and modified air injection device was considered. A modification on conventional injection device (normal air-jacket type) was carried out by changing injection angle from 90 (for conventional) to 22.5 (for modified). Continuity and Navier-Stokes equations in turbulent regime with an appropriate two-phase flow model (VOF) and turbulent model ( ) in two dimensions axisymmetry flow were formulated and solved by using the known package FLUENT version (14.5). The numerical and experimental investigations were carried out for both conventional and unconventional air-jackets at submergence ratio of 0.75 and air mass flow rate from 0.5, 2, 10, 50 and 85 kg/hr. Comparisons between the numerical and experimental results for both injection devices were made and fair agreements were found and the main results showed that the performance and maximum efficiency of airlift pump is increased for higher mass flow rate of injected air for the tested submergence ratio using unconventional airjacket
performance with average enhancement were 9% and 10% for performance and maximum efficiency respectively.
An experimental investigation of natural convection heat transfer from an isothermal horizontal,vertical and inclined heated square flat plates with and without circular hole, were carried out in two cases, perforated plates without an impermeable adiabatic hole "open core" and perforated plates with an impermeable adiabatic hole "closed core" by adiabatic plug. The experiments covered the laminar region with a range of Rayleih number of (1.11x106 ≤RaLo≤4.39x106 ), at Prandtle number (Pr=0.7). Practical experiments have been done with variable inclination angles from horizon (Ф=0o ,45o,90o,135oand 180o),facing upward (0o≤Ф<90o), and downward (90o
≤Ф<180o). The results showed that the temperature gradient increases whi
The In this experimental study, natural stone powder was utilized to improve a cohesive soil’s compaction and strength properties. According to the significant availability of limestone in the globe, it has been chosen for the purpose of the study, in addition to considering the existing rock industry massive waste. Stone powder was used in percentages of 4, 8, 12, 16% replaced from the soil weight in dry state. Some of cohesive soil’s consistency, shear, and compaction properties were depicted after improvement. The outcomes yielded in significant amendments in the experimented geotechnical properties after stone powder addition considering 60 days curing period. Cohesion and friction angle were notably increased by
... Show MoreThis study evaluated the influence of administering different levels of L-arginine into eggs of 0-day-old Japanese quail embryos. On day 0 of incubation, 480 eggs (120 for each treatment group) were injected with 0% arginine (C group), 1% arginine (T1), 2% arginine (T2) or 3% arginine (T3). After hatching, 336 quail chicks (84 chicks produced from each in ovo injection treatment) were placed in an experimental quail house and allocated to four treatment groups of three replicates, with 16 quail chicks for each replicate. Traits involved in this study were hatchability rate, initial body weight (7 days of age), final body weight (42 days old), feed intake, weight gain, feed conversion ratio and blood serum glucose, protein, cholesterol, tota
... Show More
Iraqi conventional gasoline characterized by its low octane number not exceed 82 and high lead and sulfur content. In this paper tri-component or ternary, blends of gasoline, ethanol, and methanol presented as an alternative fuel for Iraqi conventional gasoline. The study conducted by using GEM blend that equals E85 blend in octane rating. The used GEM selected from Turner, 2010 collection. G37 E20 M43 (37% gasoline + 20% ethanol+ 43% methanol) was chosen as GEM in present study. This blend used in multi-cylinder Mercedes engine, and the engine performance, and emitted emissions compared with that produced by a gasoline engine.
The results show that this blend can formulate with available Iraqi pro
... Show MoreThe gas-lift method is crucial for maintaining oil production, particularly from an established field when the natural energy of the reservoirs is depleted. To maximize oil production, a major field's gas injection rate must be distributed as efficiently as possible across its gas-lift network system. Common gas-lift optimization techniques may lose their effectiveness and become unable to replicate the gas-lift optimum in a large network system due to problems with multi-objective, multi-constrained & restricted gas injection rate distribution. The main objective of the research is to determine the possibility of using the genetic algorithm (GA) technique to achieve the optimum distribution for the continuous gas-lift injectio
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreBackground: The study aimed to investigate the effect of different techniques of en masse retraction on the vertical and sagittal position, axial inclination, rate of space closure, and type of movement of maxillary central incisor. Materials and methods: A typodont simulation system was used (CL II division 2 malocclusion). Three groups were used group 1(N=10, T-loop), group 2(N=10, Time-Saving loop), and group 3(N=10, Microimplant). Photographs were taken before and after retraction and measurements were made using Autodesk AutoCAD© software 2010. Kruskal-Wallis one-way analyses of variance and Mann-Whitney U test (p?0.05) were used. Results: The rate of space closure showed no significant difference among the three groups (p?0.05), whi
... Show More