In the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The modal of the present work has been verified by comparing the results of shape functions with that were obtained by other workers. Result shows the good agreement with 3D elasticity solution and that published by other researchers.
in this paper the second order neutral differential equations are incestigated are were we give some new suffucient conditions for all nonoscillatory
In this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.
New microphotometer was constructed in our Laboratory Which deals with the determination of Molybdenum (VI) through its Catalysis effect on Hydrogen peroxide and potasum iodide Reaction in acid medium H2SO4 0.01 mM. Linearity of 97.3% for the range 5- 100 ppm. The repeatability of result was better than 0.8 % 0.5 ppm was obtanined as L.U. (The method applied for the determination of Molybdenum (VI) in medicinal Sample (centrum). The determination was compared well with the developed method the conventional method.
Steel-concrete-steel (SCS) structural element solutions are rising due to their advantages over conventional reinforced concrete in terms of cost and strength. The impact of SCS sections with various core materials on the structural performance of composites has not yet been fully explored experimentally, and in this work, both slag and polypropylene fibers were incorporated in producing eco-friendly steel-concrete-steel composite sections. This study examined the ductility, ultimate strength, failure modes, and energy absorption capacities of steel-concrete-steel filled with eco-friendly concrete, enhanced by polypropylene fiber (PPF) to understand its impact on modern structural projects. Eco-friendly concrete was produced by the partial
... Show MoreThis paper presents an investigation to the effect of the forming speed on healing voids that inhabit at various size in an ingot. The study was performed by using finite element method with bilinear isotropic material option, circular type voids were considered. The closure index was able to predict the minimum press force necessary to consolidate voids and the reduction. The simulation was carried out, on circular cross-section lead specials containing a central void of different size. At a time with a flat die, different ratio of inside to outside radius was taken with different speed to find the best result of void closure.
A bolted–welded hybrid demountable shear connector for use in deconstructable steel–concrete composite buildings and bridges was proposed. The hybrid connector consisted of a partially threaded stud, which was welded on the flange of a steel section, and a machined steel tube with compatible geometry, which was bolted on the stud. Four standard pushout tests according to Eurocode 4 were carried out to assess the shear performance of the hybrid connector. The experimental results show that the initial stiffness, shear resistance, and slip capacity of the proposed connector were higher than those of traditional welded studs. The hybrid connector was a ductile connector, according to Eurocode 4, with slip capacity higher than 6 mm. A nonli
... Show MoreInternational companies are striving to reduce their costs and increase their profits, and these trends have produced many methods and techniques to achieve these goals. these methods is heuristic and the other Optimization.. The research includes an attempt to adapt some of these techniques in the Iraqi companies, and these techniques are to determine the optimal lot size using the algorithms Wagner-Whitin under the theory of constraints. The research adopted the case study methodology to objectively identify the problem of research, namely determining lot size optimal for each of the products of electronic measurement laboratory in Diyala and in light of the bottlenecks in w
... Show More