Characterization of the heterogonous reservoir is complex representation and evaluation of petrophysical properties and application of the relationships between porosity-permeability within the framework of hydraulic flow units is used to estimate permeability in un-cored wells. Techniques of flow unit or hydraulic flow unit (HFU) divided the reservoir into zones laterally and vertically which can be managed and control fluid flow within flow unit and considerably is entirely different with other flow units through reservoir. Each flow unit can be distinguished by applying the relationships of flow zone indicator (FZI) method. Supporting the relationship between porosity and permeability by using flow zone indictor is carried out for evaluating the reservoir quality and identification of flow unit used in reservoir zonation. In this study, flow zone indicator has been used to identify five layers belonging to Tertiary reservoirs. Consequently, the porosity-permeability cross plot has been done depending on FZI values as groups and for each group denoted to reservoir rock types. On the other hand, extending rock type identification in un-cored wells should apply a cluster analysis approach by using well logs data. Reservoir zonation has been achieved by cluster analysis approach and for each group known as cluster which variation and different with others. Five clusters generated in this study and permeability estimated depend on these groups in un-cored wells by using well log data that gives good results compared with different empirical methods.
This review examines how artificial intelligence (AI) including machine learning (ML), deep learning (DL), and the Internet of Things (IoT) is transforming operations across exploration, production, and refining in the Middle Eastern oil and gas sector. Using a systematic literature review approach, the study analyzes AI adoption in upstream, midstream, and downstream activities, with a focus on predictive maintenance, emission monitoring, and digital transformation. It identifies both opportunities and challenges in applying AI to achieve environmental and economic goals. Although adoption levels vary across the region, countries such as Saudi Arabia, the UAE, and Qatar are leading initiatives that align with global sustainability targets.
... Show MoreConstructed wetlands (CWs) are simple low-cost wastewater treatment units that use natural process to improve the effluent water quality and make it possible for its reuse.in this study used the horizontal flow system for the tertiary treatment of wastewater effluent from secondary basins at Al-Rustamiya wastewater treatment plant / old project / Baghdad / Iraq. the Phragmites Australis plant was used for wastewater treatment and the horizontal subsurface flow system was applied. the experimental study was carried out in February 2020 to October 2020. the parameters were monitored for a period of five weeks, Concentration-based average removal efficiencies for HSSF-CW were COD,53% [NO
Background: The evaluation of the chronological age is a practical method in crime investigation field that assists in identifying individuals to treat them as underage or adult. This study aimed to assess the stages of third molars mineralization in relation to chronological age of Iraqi individuals, determine the gender differences and arches (maxillary/mandibular) differences.
Materials and Methods: A total of 300 orthopantomograms of orthodontic patients were collected according to specific criteria and evaluated visually. The developmental stages of maxillary and mandibular third molars were determined according to Demirjian method. T
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreSubmerged arc welding (SAW) process is an essential metal joining processes in industry. The quality of weld is a very important working aspect for the manufacturing and construction industries, the challenges are made optimal process environment. Design of experimental using Taguchi method (L9 orthogonal array (OA)) considering three SAW parameter are (welding current, arc voltage and welding speed) and three levels (300-350-400 Amp. , 32-36-40 V and 26-28-30 cm/min). The study was done on SAW process parameters on the mechanical properties of steel type comply with (ASTM A516 grade 70). Signal to Noise ratio (S/N) was computed to calculate the optimal process parameters. Percentage contributions of each parameter are validated by using an
... Show MoreThe Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one