Columns subjected to pure axial load rarely exist in practice. Reinforced concrete columns are usually subjected to combination of axial and lateral actions and deformations, caused by spatially‐complex loading patterns as during earthquakes causes lateral deflection that in turn affects the horizontal stiffness. In this study, a numerical model was developed in threedimensional nonlinear finite element and then validated against experimental results reported in the literatures,
to investigate the behavior of conventionally RC columns subjected to axial load and . lateral reversal cyclic loading. To achieve this goal, numerical analysis was conducted by using finite element program ABAQUS/Explicit. The variables considered in this study were axial load index, concrete compressive strength, column aspect ratio, longitudinal and transverse reinforcement ratios. According to numerical case studies, the results revealed that axial load index and longitudinal reinforcement ratio have the most impact on the column response. Also, increasing concrete compressive strength and reducing column aspect ratio resulted in increasing strength capacity of the column. Moreover, increasing lateral confinement by transverse reinforcement at the column ends increases the flexural strength of a flexure-controlled RC columns.
Four simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to lo
... Show MoreThe analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is
... Show MoreThe influence of fiber orientation and water absorption on fatigue crack growth resistance for cold cure acrylic (PMMA) reinforced by chopped and woven -glass-fibers were investigated. A weight of 2 g for chopped fibers and the same weight for woven -glass-fibers (one layer) were used to prepare samples. Some of these samples would storage in dry condition; the others were immersed in water for 15 days. Fatigue test was carried out. The results shows that, for PMMA, the initial bending stress for dry specimen was 3.392 N/cm2 and the number of cycles were 1364, the initial bending stress for wet samples was 4.20 N/cm2, and the number of cycles was 2411. The samples would cut in two pieces because of the cracks would propagated fast during
... Show MoreThe provision of openings in serviceable reinforced concrete beams may result in a substantial decline in the beam's capacity and integrity, indicating the necessity of opening strengthening. The present study investigates the experimental response of reinforced concrete T-beams with multiple web-strengthened openings disposed in shear span to static and impact loads. Fourteen RC T-beams were tested in two groups, each of seven beams. The first group was tested under static loading up to failure, while the second group was tested under repeated impact loading until the width of shear cracks reached 0.3 mm. The residual static strengths of the beams subjected to impact loading were then determined. The test variables considered were
... Show MoreThe provision of openings in serviceable reinforced concrete beams may result in a substantial decline in the beam's capacity and integrity, indicating the necessity of opening strengthening. The present study investigates the experimental response of reinforced concrete T-beams with multiple web-strengthened openings disposed in shear span to static and impact loads. Fourteen RC T-beams were tested in two groups, each of seven beams. The first group was tested under static loading up to failure, while the second group was tested under repeated impact loading until the width of shear cracks reached 0.3 mm. The residual static strengths of the beams subjected to impact loading were then determined. The test variables considered were
... Show MoreThis paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an
Experiments were conducted to study axial liquid dispersion coefficient in slurry bubble column of 0.15 m inside diameter and 1.6 m height using perforated plate gas distributor of 54 holes of a size equal to 1 mm diameter and with a 0.24 free area of holes to the cross sectional area of the column. The three phase system consists of air, water and PVC used as the solid phase. The effect of solid loading (0, 30 and 60 kg/m3) and solid diameter (0.7, 1.5 and 3 mm) on the axial liquid dispersion coefficient at different axial location (25, 50 and 75 cm) and superficial gas velocity covered homogeneous-heterogeneous flow regime (1-10 cm/s) were studied in the present work. The results show that the axial liquid dispersion coeffic
... Show MoreThis paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation
... Show More