The aim of this study was to investigate antibiotic amoxicillin removal from synthetic pharmaceutical wastewater. Titanium dioxide (TiO2) was used in photocatalysis treatment method under natural solar irradiation in a tubular reactor. The photocatalytic removal efficiency was evaluated by the reduction in amoxicillin concentration. The effects of antibiotics concentration, TiO2 dose, irradiation time and the effect of pH were studied. The optimum conditions were found to be irradiation time 5 hr, catalyst dosage 0.6 g/L, flow rate 1 L/min and pH 5. The photocatalytic treatment was able to destruct the amoxicillin in 5 hr and induced an amoxicillin reduction of about 10% with 141.8 kJ/L accumulated solar energy per liter of solution.
Water scarcity is one of the most important problems facing humanity in various fields such as economics, industry, agriculture, and tourism. This may push people to use low-quality water like industrial-wastewater. The application of some chemical compounds to get rid of heavy metals such as cadmium is an environmentally harmful approach. It is well-known that heavy metals as cadmium may induce harmful problems when present in water and invade to soil, plants and food chain of a human being. In this case, man will be forced to use the low quality water in irrigation. Application of natural materials instead of chemicals to remove cadmium from polluted water is an environmental friendly approach. Attention was drawn in this research wor
... Show MoreCatalytic wet air oxidation of aqueous phenol solution was studied in a pilot plant trickle bed reactor using copperoxide catalyst supported on alumina and silica. Catalysts were prepared by impregnating method. Effect of feed solutionpH (5.9, 7.3, and 9.2), gas flow rate (20%, 50%, 80%, and 100%), WHSV (1, 2, and 3 h-1), temperature (120°C, 140°C,and 160°C), oxygen partial pressure (6, 9, 12 bar), and initial phenol concentration (1, 2, and 4 g/l).Generally, theperformance of the catalysts was better when the pH of feed solution was increased. The catalysts deactivation is relatedto the dissolution of the metal oxides from the catalyst surface due to the acidic conditions. Phenol oxidation reactionwas strongly affected by WHSV,
... Show MoreThe degradation and mineralization of 4-chlorophenol (4-CP) by advanced oxidation processes (AOPs) was investigated in this work, using both of UV/H2O2 and photo-Fenton UV/H2O2/Fe+3 systems.The reaction was influenced by the input concentration of H2O2, the amount of the iron catalyst, the type of iron salt, the pH and the concentration of 4-CP. A colored solution of benzoquinon can be observed through the first 5 minutes of irradiation time for UV/H2O2 system when low concentration (0.01mol/L) of H2O2 was used. The colored solution of benzoquinon could also be observed through the first 5 minutes for the UV/H2O2/Fe+3 system at high
concentration (100ppm) of 4-CP. The results have shown that adding Fe+3 to the UV/H2O2 system enhanced
In the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.
This research study the effect of Titanium dioxide on the tensile properties of
Polystyrene (PS) and Polycarbonate (PC) polymers. The stress – strain curve for pure PS
and pure PC, shows that Young modulus for PS is higher than Young modulus for PC,
because PS have higher ultimate strength than PC.
The addition of TiO2 to PS and PC will reduce the Young modulus and ultimate stress,
because the TiO2 particles will reduces or freeze the orientation of these molecular chain
and reduced the toughness of PC, while when the TiO2 were added to PS, the value of
toughness will be stabilized because TiO2 particles make these chains interlocked and the
mobility of the chains will be restrict.
Nanotechnology is a continually expanding field for its uses and applications in multiple areas i.e. medicine, science, and engineering. Biosynthesis is straightforward, less-toxicity, and cost-effective technology. TiO2 NPs biosynthesis has attained consideration in recent decades. In this study, probiotic bacteria were isolated from cow’s raw milk samples, and then were identified by using the Vitek2 system; as Leuconostoc spp. included Leuconostoc mesenteroides subsp. mesenteroides (Leu.1), Leuconostoc mesenteroides subsp. cremoris (Leu.4), and Leuconostoc pseudomesenteroides (Leu.14). All Leuconostoc spp. isolates showed an ability for TiO2 NPs bio-production, after being incubated at anaerobic conditions (30 o C/ 24 h) in DeM
... Show MoreThe catalytic wet air oxidation (CWAO) of phenol has been studied in a trickle bed reactor
using active carbon prepared from date stones as catalyst by ferric and zinc chloride activation (FAC and ZAC). The activated carbons were characterized by measuring their surface area and adsorption capacity besides conventional properties, and then checked for CWAO using a trickle bed reactor operating at different conditions (i.e. pH, gas flow rate, LHSV, temperature and oxygen partial pressure). The results showed that the active carbon (FAC and ZAC), without any active metal supported, gives the highest phenol conversion. The reaction network proposed account
... Show MoreTiO2 thin films were deposited by Spray Pyrolysis with thickness ((350±25) nm) onto glass substrates at (350°C), and the film was annealed at temperatures (400 and 500)°C. The structural and morphological properties of the thin films (TiO2) were investigated by X-ray diffraction, Field emission scanning electron microscopy and atomic force microscope. The gas sensor fabricated by evaporating aluminum electrodes using the annealed TiO2 thin films as an active material. The sensitivity of the sensors was determined by change the electrical resistance towards NO2 at different working temperatures (200
Kinetics study on the phenol oxidation by catalytic wet air oxidation (CWAO) using CuO.NiO/Al2O3 as heterogeneous catalyst is presented. 4 g/l phenol solution of pH 7.3 was oxidized in a trickle bed reactor with gas flow rate of 80% stochiometric excess (S.E).. In order to verify the proposed kinetics, a series of CWAO experimental tests were done at two temperatures (140 and 160° C), oxygen partial pressures (9 and 12 bar), and weight hourly space velocity (WHSV) (1, 1.5, 2, 2.5, and 3 h-1). According to Power Law, the reaction orders are found to be approximately 1 and 0.5 with respect to phenol concentration and oxygen solubility, respectively. These values favorably compare with those cited in the literature for intrinsic kinetics,
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomic force micr
... Show More