The contamination of soil with the wastes of oil industry products that are complex mixtures of hydrocarbons increased recently due to the large development of oil industries in Iraq. This study deals with the remediation of low permeability contaminated clayey soil by using the enhanced electrokinetic technique (EK). The contaminated soil samples obtained from Thi-Qar oil refinery plant in Al-Nassyriah city, where the byproducts of refinery plant are disposed into that site. The byproduct contaminant treated as total petroleum hydrocarbons (TPH) to avoid dealing and complexity of treating the individual minerals and compounds consisting the contaminant. The initial concentrations of TPH were (702.7, 1168, 1235) ppm in the contaminated soil samples NA10, NA11, and NA12 respectively. The remediation technique includes a bench-scale experimental study by applying the enhanced electrokinetic test on the soil sample NA12 that contains the higher concentration of TPH in compared with other soil samples. A constant DC voltage gradient of 1.0 VDC/cm was applied for a period of 10 days. This echnology was enhanced by using flushing solution of ethanol and deionized water, which was mixed in ratios of 30% and 70% respectively. The results of this study showed that the removal of TPH at the anode was about 15% and the concentration of TPH decreased at anode, which reflect the migration of TPH towards the cathode.
This study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr
... Show MoreThe present study addresses the behavior of gases in cultivation media as an essential factor to develop the relationship between the microorganisms that are present in the same environment. This relationship was explained via mass transfer of those gases to be a reasonable driving force in changing biological trends. Stripping and dissolution of oxygen and carbon dioxide in water and dairy wastewater were investigated in this study. Bubble column bioreactor under thermal control system was constructed and used for these processes. The experimental results showed that the removal of gases from the culture media requires more time than the dissolution. For example, the volumetric mass transfer coefficient for the removal
... Show MoreRemoval of solar brown and direct black dyes by coagulation with two aluminum based
coagulants was conducted. The main objective is to examine the efficiency of these
coagulants in the treatment of dye polluted water discharged from Al-Kadhymia Textile
Company (Baghdad-Iraq). The performance of these coagulants was investigated through
jar test by comparing dye percent removal at different wastewater pH, coagulant dose,
and initial dye concentration. Results show that alum works better than PAC under acidic
media (5-6) and PAC works better under basic media (7-8) in the removal of both solar
brown and direct black dyes. Higher doses of PAC were required to achieve the
maximum removal efficiency under optimum pH co
This study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr
... Show MoreThis work was carried to study the capability of activated alumina from bauxite compared with activated carbon adsorption capability to reduce the color content from Al-Hilla Textile Company wastewater. Six dyes were studied from two types(reactive and dispersed) namely (blue, red, yellow) from wastewater and aqueous solutions.
Forty eight experiments were carried out to study the effect of various initial conditions (bed height, flow rate, initial concentration, pH value, temperature, and competitive adsorption) on adsorption process.
The results showed that the adsorption process using activated carbon insured a good degree of color reduction reaching (99.7%) and was better than activated bauxite which reached (95%).
A study of taxonomic quality of soil algae was conducted with some environmental variables in three sites of local gardens (Kadhimiya, Adhamiya and Dora) within the governorate of Baghdad for the period from October 2016 to March 2017. The study identified 28 species belonging to 16 species in which the predominance of blue green algae (18 species) Followed by Bacillarophyta algae (7 species) and three types of Chlorophyta. The study showed an increase in species of Oscillatoria. The results showed no significant differences between sites in temperature, pH and relative humidity, while there were clear differences between sites for salinity and nutrient The study showed a difference of irrigation water quality and use of different fertilize
... Show MoreCracking of soils affects their geotechnical properties and behavior such as soil strength and stability. In this paper, 2D Electrical Resistivity Imaging Method, as a non-invasive technique, was adopted to investigate the effect of soil cracks of a centemetric scale on resistivity of sandy soil. The electrical resistivity measurements were carried out using ABEM SAS 300C Terrameter system at a laboratory scale using Wenner array. The measurements were interpreted using horizontal profiles, forward modeling and 2D inverse resistivity sections. The results showed that soil cracks cause significant changes in soil resistivity. These changes can be attributed to the high resistivity contrast between the highly resistive air-filled cracks an
... Show MoreIn this study, the CR-39 detector technique was used, to estimate the uranium concentration from the soil in midland refineries Company (Doura refine (, Baghdad, Iraq. Uranium concentrations in soil samples have been measured using solid state nuclear track detector type CR-39. Nine soil samples were collected from different areas within the Doura refinery and other soil samples were collected form Abu Tayara Street and ALshortaa District outside the refinery for comparison. The results showed variable values for uranium concentrations. The average value of uranium concentration was found to be 0.37 ppm in doura refinery. For areas outside the refinery, the concentration of uranium was 0.008 ppm. Thes
... Show MoreThermal properties of soils are important in buried structures contact problems. Although laboratory is distinctly advantageous in measuring the thermal conductivity of soil under ideal condition, given the ability to simulate relatively large-scale in place of soil bed, the field thermal conductivity of soil is not yet commonly used in many types of research. The use of only a laboratory experiment to estimate thermal conductivity may be the key reason for overestimation or underestimation it. In this paper, an intensive site investigation including field thermal conductivity tests for six different subsoil strata were performed using a thermal probe method (TLS-100) to systematically understanding the effects of field dry density, water c
... Show More