The contamination of soil with the wastes of oil industry products that are complex mixtures of hydrocarbons increased recently due to the large development of oil industries in Iraq. This study deals with the remediation of low permeability contaminated clayey soil by using the enhanced electrokinetic technique (EK). The contaminated soil samples obtained from Thi-Qar oil refinery plant in Al-Nassyriah city, where the byproducts of refinery plant are disposed into that site. The byproduct contaminant treated as total petroleum hydrocarbons (TPH) to avoid dealing and complexity of treating the individual minerals and compounds consisting the contaminant. The initial concentrations of TPH were (702.7, 1168, 1235) ppm in the contaminated soil samples NA10, NA11, and NA12 respectively. The remediation technique includes a bench-scale experimental study by applying the enhanced electrokinetic test on the soil sample NA12 that contains the higher concentration of TPH in compared with other soil samples. A constant DC voltage gradient of 1.0 VDC/cm was applied for a period of 10 days. This echnology was enhanced by using flushing solution of ethanol and deionized water, which was mixed in ratios of 30% and 70% respectively. The results of this study showed that the removal of TPH at the anode was about 15% and the concentration of TPH decreased at anode, which reflect the migration of TPH towards the cathode.
The effects of the permeation cement grout with fly ash on the sandy soil skeleton were studied in the present work in two phase; first phase the shear strength parameters, and the second phase effect of these grouted materials on volume grouted zone by injection (51) cm³ of slurry in sandy soil placed in steel cylinder model with dimension 15 cm in diameter and 30 cm in height. The soil sample was obtained from Karbala city and it is classified as poorly graded sand (SP) according to USCS. The soil samples were improved by cement grout with three percentages weight of water cement ratio (w:c); (0.1w:0.9c, 0.8w:0.2c, and 0.7w:0.3c), while the soil samples were dehydrated for one day
... Show MoreThis investigation deals with the use of orange peel (OP) waste as adsorbent for removal of nitrate (NO3) from simulated wastewater. Orange peel prepared in two conditions dried at 60C° (OPD) and burning at 500 °C (OPB). The effect of pH: 2-10, contact time: 30- 180 min, sorbent weight: 0.5- 3.0 g were considered. The optimal pH value for NO3 adsorption was found to be 2.0 for both adsorbents. The equilibrium data were analyzed using Langmuir and Freundlich isotherm models. Freundlich model was found to fit the equilibrium data very well with high-correlation coefficient (R2). The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R2
... Show MoreIn this study, the relationship between the bare soil temperature with respect to its salinity is presented, the bare soil feature is considered only by eliminating all other land features by classifying the site location by using the support vector machine algorithm, in the same time the salinity index that calculated from the spectral response from the satellite bands is calibrated using empirical salinity value calculated from field soil samples. A 2D probability density function is used to analyze the relationship between the temperature rising from the minimum temperature (from the sunrise time) due to the solar radiation duration tell the time of the satellite capturing the scene image and the calibrated salinity index is presented. T
... Show MoreDora petroleum refinery waste water is the one of the important source of pollution by priority pollutant aromatic compound discharged to Tigris river in Iraq. the station has waste water treatment unit contains many treatment subunits The most important sub units is :skimmer units ,physiochemical unit ,daf unit, biological unit. The aim of research project is to study the ability of unit to remove the priority pollutant aromatic compound and follow up these compounds in river to study ability of river to self removal. A solid phase extraction (SPE) followed by high performance liquid chromatography-ultra violet (HPLC-UV) technique is depicted for the quantitative estimation of benzidines and phenols. Experimental studies were performed to
... Show MoreThis Investigation aims to study the effect of adding Steel fibers with different volume fractions Vf (o.5, 0.75, and 1% by volume of concrete) with aspect ratio 100 on mechanical properties of concrete, and also
finding the influence of petroleum products (Kerosene and Diesel) on mechanical properties of Steel Fiber Reinforced Concrete (SFRC).
The experimental work consists of two groups: group one consists of specimens (cubes and prisms) plain and concrete reinforced with steel fiber exposed to continuous curing with water. Group two consists of
specimens (cubes and prisms) plain and concrete reinforced with steel fiber exposed to kerosene and diesel after curing them in water for 28 days before exposure. The results of all te
Recently new and multiple concepts emerged in the sustainability issues ,which transformed into number of planning and designing policies and strategies that must be committed by the designers and the relevant trends in building ,regarding Iraq and the reality of industrial areas ,especially in Baghdad, which helped to sustain few of it & emerged another with bad reflect ,which for that made it clear the importance of implicating sustainable ecological planning and designing strategies provided by the concept of Eco-industrial parks and the concept of Ecotowns and the future potentials provided ,and the easiness of carrying it out which made it flexible and away to provide a base supported by it for rebuilding and rehabilitation and
... Show MoreIn this study, the sonochemical degradation of phenol in water was investigated using two types of ultrasonic wave generators; 20 kHz ultrasonic processor and 40 kHz ultrasonic cleaner bath. Mineralization rates were determined as a function of phenol concentration, contact time, pH, power density, and type of ultrasonic generator. Results revealed that sonochemical degradation of the phenol conversion was enhanced at increased applied power densities and acidic conditions. At 10 mg/L initial concentration of phenol, pH 7, and applied power density of 3000 W/L, the maximum removal efficiency of phenol was 93% using ultrasonic processor at 2h contact time. Whereby, it was 87% using and ultrasonic cleaner bath at 16h contact time and 150 W
... Show More