Nowadays, the use of recycled waste construction materials instead of aggregates is becoming popular in construction owing to its environmental benefits. This paper presents an experimental and analytical campaign to study the behavior of axially loaded columns constructed from recycled aggregates. The latter was used instead of natural aggregates, and they were collected from the waste of previous concrete constructions. Different concrete mixtures made from varying amounts of recycled aggregates ranged from 0 to 50% of the total coarse aggregate were conducted to achieve 28 MPa. The effect of steel fibers is another investigated variable with volumes ranged from 0 to 2% concerning concrete’s mixture. The experimental results showed that the concrete strength is dependent on the amount of recycled aggregates. When the recycled aggregates were less than 30% of the total aggregates, they had a negligible effect on concrete strength and the load carrying capacity of the column models were improved. Also, the presence of steel fibers enhanced the load carrying capacity of the columns constructed from concrete with recycled aggregates of more than 30%. Finite element analysis (using ANSYS 16.1 software program) was conducted to simulate the experimental investigations, and they achieved good agreements with the test results.
A novel Schiff base ligand (DBC) synthesized from 4-chlorobenzoic acid, along with its Cu (II) and Co (II) complexes, was prepared and characterized using FT-IR, 1H and 13C-NMR, UV-Vis spectroscopy, as well as magnetic and conductivity measurements. Based on this, a tetrahedral structure of [M(DBC)Cl2] was proposed for the complexes. Antioxidant activity of the compounds was assessed and compared to ascorbic acid, revealing that the copper complex exhibited superior antioxidant properties compared to the cobalt complex and the ligand. Furthermore, the antibiofilm potential of the copper and cobalt complexes was assessed against five clinically relevant bacterial species (P.aeruginosa, E.coli, K.pneumoniae, S.aureus and S.typhi) usin
... Show MoreThe current study introduces a novel technique to handle electrochemical localized corrosion in certain limited regions rather than applying comprehensive cathodic protection (CP) treatment. An impressed current cathodic protection cell (ICCPC) was fabricated and firmly installed on the middle of a steel structure surface to deter localized corrosion in fixed or mobile steel structures. The designed ICCPC comprises three essential parts: an anode, a cathode, and an artificial electrolyte. The latter was developed to mimic the function of the natural electrolyte in CP. A proportional-integrated-derivative (PID) controller was designed to stabilize this potential below the ICCPC at a cathodic potential of −850 mV, which is crucial for prote
... Show Moreتم تحضير ثلاث معقدات جديدة Ni (II)و Cu (II) و Zn (II) باستخدام الليكند المحضر الجديد من تفاعل حامض مالونيك ثنائي هيدرازايد مع 2-بيريدين كربوكسالديهايد. حيث شخصت المعقدات لمحضرة وكذلك الليكند باستخدام تقنيات مختلفة مثل FT-IR و UV-Vis و Mass و 1H-NMR و 13C-NMR وتحليل العناصر CHN و تقدير محتوى الكلور والموصلية المولارية والحساسية المغناطيسية والامتصاص الذري لتشخيص هذه المركبات. لكل معقد محضر جديد من النيكل والنحاس والزنك ، كشفت نتائج ا
... Show MoreThis study investigated the prevalence of quinolones resistance proteins encoding genes (qnr genes) and co-resistance for fluoroquinolones and β-lactams among clinical isolates of Klebsiella pneumoniae. Out of 150 clinical samples, 50 isolates of K. pneumoniae were identified according to morphological and biochemical properties. These isolates were collected from different clinical samples, including 15 (30%) urine, 12 (24%) blood, 9 (18%) sputum, 9 (18%) wound, and 5 (10%) burn. The minimum inhibitory concentrations (MICs) assay revealed that 15 (30%) of isolates were resistant to ciprofloxacin (≥4µg/ml), 11 (22%) of isolates were resistant to levofloxacin (≥8 µg/ml), 21 (42%) of isolates were re
... Show MoreThe preparation and characterization of innovative nanocomposites based on zinc oxide nanorods (ZNR) encapsulated by graphene (Gr) nanosheets and decorated with silver (Ag), and cupper (Cu) nanoparticles (NP) were studied. The prepared nanocomposites (ZNR@Gr/Cu-Ag) were examined by different techniques including Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), UV-Vis spectrophotometer and fluorescence spectroscopy. The results showed that the ZNR has been good cover by five layers of graphene and decorated with Ag and Cu NPs with particles size of about 10-15 nm. The ZNR@Gr/Cu-Ag nanocomposites exhibit high absorption behavior in ultraviolet (UV) region of sp
... Show MoreObjective: to assess the awareness and knowledge of our medical students regarding dose levels of imaging procedures and radiation safety issues, and to conclude how the curriculum of clinical radiology in the college medical program impacts such knowledge.
Subjects and methods: this is a cross-sectional study conducted among 150 medical students in Alkindy College of Medicine between January 2021 to July 2021, regardless of their age or gender. The study included six grades according to the year 2020-2021. A questionnaire consisting of 12 multiple-choice questions was conducted via an online survey using Google Forms. The questions were divided into two parts
... Show More