Preferred Language
Articles
/
joe-663
Accuracy Assessment of Stonex X-300 Laser Scanner Cameras
...Show More Authors

Assessment the actual accuracy of laboratory devices prior to first use is very important to know the capabilities of such devices and employ them in multiple domains. As the manual of the device provides information and values in laboratory conditions for the accuracy of these devices, thus the actual evaluation process is necessary.

In this paper, the accuracy of laser scanner (stonex X-300) cameras were evaluated, so that those cameras attached to the device and lead supporting role in it. This is particularly because the device manual did not contain sufficient information about those cameras.

To know the accuracy when using these cameras in close range photogrammetry, laser scanning (stonex X-300) device is used to obtain photos of a board including (23) ground control points on it, those observed from two stations and adjusted by using equations of the 3D adjusted triangulation networks by lengths and angles (hybrid routine). (10) GCPs and (13) checkpoints were used to compare the Root Mean Square Error (RMSE) of checkpoints that result from using laser scan cameras with (RMSE) of the same checkpoints that result from using digital photos (Nikon 5200D).

The result of (RMSE) comparison was ) in the X direction, ) in the Y direction and ) in the Z direction.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (17)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Comparison of Faster R-CNN and YOLOv5 for Overlapping Objects Recognition
...Show More Authors

Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area.  The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (14)
Scopus Crossref
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Development of an On-Line Self-Tuning FPGA-PID-PWM Control Algorithm Design for DC-DC Buck Converter in Mobile Applications
...Show More Authors

View Publication Preview PDF
Publication Date
Sun Sep 01 2013
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Real Time Motion Detection in Surveillance Camera Using MATLAB
...Show More Authors

Surveillance cameras are video cameras used for the purpose of observing an area. They are often connected to a recording device or IP network, and may be watched by a security guard or law enforcement officer. In case of location have less percentage of movement (like home courtyard during night); then we need to check whole recorded video to show where and when that motion occur which are wasting in time. So this paper aims at processing the real time video captured by a Webcam to detect motion in the Scene using MATLAB 2012a, with keeping in mind that camera still recorded which means real time detection. The results show accuracy and efficiency in detecting motion

Preview PDF
Publication Date
Fri Jan 25 2019
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics Vol
Predicate the Ability of Extracorporeal Shock Wave Lithotripsy (ESWL) to treat the Kidney Stones by used Combined Classifier
...Show More Authors

Extracorporeal Shock Wave Lithotripsy (ESWL) is the most commonplace remedy for kidney stone. Shock waves from outside the body frame are centered at a kidney stone inflicting the stone to fragment. The success of the (ESWL) treatment is based on some variables such as age, sex, stone quantity stone period and so on. Thus, the prediction the success of remedy by this method is so important for professionals to make a decision to continue using (ESWL) or tousing another remedy technique. In this study, a prediction system for (ESWL) treatment by used three techniques of mixing classifiers, which is Product Rule (PR), Neural Network (NN) and the proposed classifier called Nested Combined Classi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
Digital Literacy at The University
...Show More Authors

The revolution of technology in the 21st century has changed radically the
climate of opinion concerning second language education. In order to excel in
today’s world, teachers and learners need to adopt new roles and be equipped with
new skills and competencies that go beyond the basic ones of listening, speaking,
reading, and writing; skills that cannot be gained if teachers teach mere academic
subjects, and students are evaluated on how well they have learnt the minute sub
skills in those content areas.
This session will touch upon several skills which may be considered the
new basics of the 21st century. Among these skills are: autonomy, active learning,
critical thinking, cooperative learning, and digita

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Enhanced Performance of Consensus Wireless Sensor Controlled System via Particle Swarm Optimization Algorithm
...Show More Authors

     This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials.
Calibration and analysis of the potable water network in the Al-Yarmouk region employing WaterGEMS and GIS
...Show More Authors
Abstract<p>Water supply and distribution networks play an important role in our daily activities. They make a substantial contribution to public health by providing potable water for public consumption and non-potable applications such as firefighters and other purposes such as irrigation. This study used ArcMap 10.8 and WaterGEMS CONNECT Edition update 1 version to create a hydraulic network model to simulate the pipes’ network. Detailed network information, including pipe lengths, layouts, and diameters, was given by the Baghdad Water Department. The TUF-2000H Handheld digital ultrasonic flow meter has been used to measure the water flows in the network’s source nodes. In eight junctions, </p> ... Show More
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref