Preferred Language
Articles
/
joe-662
Bond Stresses between Reinforcing Bar and Reactive Powder Concrete
...Show More Authors

A good performance of reinforced concrete structures is ensured by the bond between steel and concrete, which makes the materials work together, forming a part of solidarity. The behavior of the bond between the reinforcing bar and the surrounding concrete is significant to evaluate the cracking control in serviceability limit state and load capacity in the ultimate limit state. In this investigation, the bond stresses between reinforcing bar and reactive powder concrete (RPC) was considered to compare it with that of normal strength concrete (NSC). The push-out test with short embedment length is considered in this study to evaluate the bond strength, bond stress-slip relationship, and bond stress-crack width relationship for reactive powder concrete members. The compressive strength of concrete, the nominal diameter of reinforcement, concrete cover, and amount of steel fibers and embedded length of reinforcement were considered as variables in this study.

The test results show that the ultimate bond stress increased with increasing of the compressive strength of concrete, decreasing the nominal diameter of the reinforcing bar, increasing the concrete cover and increasing steel fiber content. In a bond stress-slip relationship, the NSC specimen shows a very short softening zone after reaching the peak point in comparisons with RPC specimen. In RPC, bond stress-slip relationship shows stiffer behavior when the steel fiber content was increased. RPC shows stepper softening zone due to the presence of steel fiber, and the absence of steel fiber cause push-out failure without descending part after peak point. Using NSC instead of RPC in anchorage between reinforcement and concrete, decrease the crack width produced due to radial tensile stresses through the push-out of reinforcing bar. In RPC, the absence of steel fiber, decrease the nominal diameter of the reinforcing bar, increase the concrete cover, decrease the embedded length of reinforcing bar cause push-out failure and vice versa cause splitting failure.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 22 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Comparison of regional bond strength among different types of posts luted with different types of cement
...Show More Authors

Background: This in vitro study was carried out to investigate the effect of post space regions (coronal, middle and apical), the effect of post types ( Manually Milled Zirconia post, Prefabricated Fiber post, prefabricated Zirconia post) and the type of cement used (GIC, self-adhesive resin cement) on the bond strength between the posts and root dentin by using push-out test. Material and methods: Forty eight mandibular premolars extracted for orthodontic reasons (single rooted) were instrumented with ProTaper system (hand use) and obturated with gutta percha for ProTaper using AH26® root canal sealer following the manufacturer instructions. After 24 hours, post space was prepared using Zirix and Glassix drills no.3 creating 8 mm dept

... Show More
View Publication Preview PDF
Publication Date
Mon May 01 2017
Journal Name
International Journal Of Science And Research (ijsr)
Some Properties of Mortar and Concrete Using Brick, Glass and Tile Waste as Partial Replacement of Cement
...Show More Authors

The using of waste products as a recycled material was one of the most important studies for saving money and reduces the pollution. Mortar and concrete mixes with (10, 20 and 30)% of brick, glass and tile powder as replacement by weight of cement was investigated. The concrete mixes using brick or glass as 10%replacement of cement exhibited enhancement in compressive strength about (6, 4.7 and 2.0)% and (7.2, 5.6 and 2)% at age 7, 28 and 90 days respectively compared to reference mix. The 20% replacement of glass powder also showed an increase in the compressive strength up to (8, 6.3 and 4) %at age 7,28 and 90 days respectively compared to reference mix. Finally concrete mix using (10, 20 and 30) % tile powder as replacement of cement sho

... Show More
Publication Date
Mon May 01 2017
Journal Name
International Journal Of Science And Research (ijsr)
Some Properties of Mortar and Concrete Using Brick, Glass and Tile Waste as Partial Replacement of Cement
...Show More Authors

The using of waste products as a recycled material was one of the most important studies for saving money and reduces the pollution. Mortar and concrete mixes with (10, 20 and 30)% of brick, glass and tile powder as replacement by weight of cement was investigated. The concrete mixes using brick or glass as 10%replacement of cement exhibited enhancement in compressive strength about (6, 4.7 and 2.0)% and (7.2, 5.6 and 2)% at age 7, 28 and 90 days respectively compared to reference mix. The 20% replacement of glass powder also showed an increase in the compressive strength up to (8, 6.3 and 4) %at age 7,28 and 90 days respectively compared to reference mix. Finally concrete mix using (10, 20 and 30) % tile powder as replacement of cement sho

... Show More
Publication Date
Wed May 24 2017
Journal Name
International Journal Of Science And Research (ijsr)
Some Properties of Mortar and Concrete Using Brick, Glass and Tile Waste as Partial Replacement of Cement
...Show More Authors

The using of waste products as a recycled material was one of the most important studies for saving money and reduces the pollution. Mortar and concrete mixes with (10, 20 and 30)% of brick, glass and tile powder as replacement by weight of cement was investigated. The concrete mixes using brick or glass as 10%replacement of cement exhibited enhancement in compressive strength about (6, 4.7 and 2.0)% and (7.2, 5.6 and 2)% at age 7, 28 and 90 days respectively compared to reference mix. The 20% replacement of glass powder also showed an increase in the compressive strength up to (8, 6.3 and 4) %at age 7,28 and 90 days respectively compared to reference mix. Finally concrete mix using (10, 20 and 30) % tile powder as replacement of cement sho

... Show More
Publication Date
Tue Oct 30 2018
Journal Name
Civil Engineering Journal
Equivalent Modulus of Asphalt Concrete Layers
...Show More Authors

A flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Performance of Self-Compacting Concrete Slab with Grinded Local Rocks
...Show More Authors

The effect of using grinded rocks of (quartzite and porcelanite) as powder of (10 and 20) % replacement by weight of cement for self-compacting concrete slabs was investigated in this study. Five slabs with 15 concrete cubes were tested experimentally at 28 days to study the compressive strength, ultimate load, ultimate deflection, ductility, crack load and steel strain. The test results show that, the compressive strength improvement when replacement of local rock powder reached to (7.3, 4.22) % for (10 and 20) % quartzite powder and (11.3, 16.1) % for (10 and 20) % porcelanite powder, respectively compared to the reference specimen. The ultimate load percentage increase for slabs with (10 and 20) % rep

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 11 2021
Journal Name
Engineering, Technology & Applied Science Research
Impact Resistance of Bendable Concrete Reinforced with Grids and Containing PVA Solution
...Show More Authors

The development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×

... Show More
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Isolate and diagnose some bacteria contaminated minced meat and determine the concentrations of powder and extracts plant cinnamon bark inhibitory and minimum lethal bacteria
...Show More Authors

Powder extracts hot water from local ground beef and studied inhibitory effectiveness of powder and extracts to the concentration of the aqueous extract hot Gulf students

View Publication Preview PDF
Publication Date
Mon Jan 18 2021
Journal Name
Materials Science And Engineering
Properties of engineered cementitious composite concrete (bendable concrete) produced using Portland limestone cement
...Show More Authors

Bendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o

... Show More
Publication Date
Mon Jul 30 2018
Journal Name
Civil Engineering Journal
Performance of Post-Fire Composite Prestressed Concrete Beam Topped with Reinforced Concrete Flange
...Show More Authors

The performance of composite prestressed concrete beam topped with reinforced concrete flange structures in fire depends upon several factors, including the change in properties of the two different materials due to fire exposure and temperature distribution within the composition of the composite members of the structure. The present experimental work included casting of 12 identical simply supported prestressed concrete beams grouped into 3 categories, depending on the strength of the top reinforced concrete deck slab (20, 30, and 40 MPa). They were connected together by using shear connector reinforcements. To simulate the real practical fire disasters, 3 composite prestressed concrete beams from each group were exposed to high t

... Show More
View Publication Preview PDF
Crossref (2)
Clarivate Crossref