Preferred Language
Articles
/
joe-662
Bond Stresses between Reinforcing Bar and Reactive Powder Concrete
...Show More Authors

A good performance of reinforced concrete structures is ensured by the bond between steel and concrete, which makes the materials work together, forming a part of solidarity. The behavior of the bond between the reinforcing bar and the surrounding concrete is significant to evaluate the cracking control in serviceability limit state and load capacity in the ultimate limit state. In this investigation, the bond stresses between reinforcing bar and reactive powder concrete (RPC) was considered to compare it with that of normal strength concrete (NSC). The push-out test with short embedment length is considered in this study to evaluate the bond strength, bond stress-slip relationship, and bond stress-crack width relationship for reactive powder concrete members. The compressive strength of concrete, the nominal diameter of reinforcement, concrete cover, and amount of steel fibers and embedded length of reinforcement were considered as variables in this study.

The test results show that the ultimate bond stress increased with increasing of the compressive strength of concrete, decreasing the nominal diameter of the reinforcing bar, increasing the concrete cover and increasing steel fiber content. In a bond stress-slip relationship, the NSC specimen shows a very short softening zone after reaching the peak point in comparisons with RPC specimen. In RPC, bond stress-slip relationship shows stiffer behavior when the steel fiber content was increased. RPC shows stepper softening zone due to the presence of steel fiber, and the absence of steel fiber cause push-out failure without descending part after peak point. Using NSC instead of RPC in anchorage between reinforcement and concrete, decrease the crack width produced due to radial tensile stresses through the push-out of reinforcing bar. In RPC, the absence of steel fiber, decrease the nominal diameter of the reinforcing bar, increase the concrete cover, decrease the embedded length of reinforcing bar cause push-out failure and vice versa cause splitting failure.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Behavior of Reinforced Concrete Deep Beams Strengthened with Carbon Fiber Reinforced Polymer Strips
...Show More Authors

This research is concerned to investigate the behavior of reinforced concrete (RC) deep beams strengthened with carbon fiber reinforced polymer (CFRP) strips. The experimental part of this research is carried out by testing seven RC deep beams having the same dimensions and steel reinforcement which have been divided into two groups according to the strengthening schemes. Group one was consisted of three deep beams strengthened with vertical U-wrapped CFRP strips. While, Group two was consisted of three deep beams strengthened with inclined CFRP strips oriented by 45o with the longitudinal axis of the beam. The remaining beam is kept unstrengthening as a reference beam. For each group, the variable considered

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 26 2021
Journal Name
Life-cycle Civil Engineering: Innovation, Theory And Practice
Shear performance of a novel demountable connector for reusable steel-concrete composite structures
...Show More Authors

A novel demountable shear connector is proposed to link a concrete slab to steel sections in a way that resulting steel-concrete composite floor is demountable, i.e. it can be easily dismantled at the end of its service life. The proposed connectors consist of two parts: the first part is a hollow steel tube with internal threads at its lower end. The second part is a compatible partially threaded bolted stud. After linking the stud to the steel section, the hollow steel tube can be fastened over the threaded stud, which create a complete demountable shear connector. The connector is suitable for use in both composite bridges and buildings, and using cast in-situ slabs, precast solid slabs, or hollow-core precast slabs. A series of push-off

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jun 04 2025
Journal Name
Engineering, Technology & Applied Science Research
Investigating Fiber Reinforcement Effects on the Performance of Concrete Pavements under Repeated Load
...Show More Authors

Concrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analys

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Deformability of non-prismatic prestressed concrete beams with multiple openings of different configurations
...Show More Authors
Abstract<p>This work presents experimental research using draped prestressed steel strands to improve the load-carrying capacity of prestressed concrete non-prismatic beams with multiple openings of various designs. The short-term deflection of non-prismatic prestressed concrete beams (NPCBs) flexural members under static loading were used to evaluate this improvement. Six simply supported (NPCBs) beams, five beams with openings, and one solid specimen used as a reference beam were all tested as part of the experiment. All of the beams were subjected to a monotonic midpoint load test. The configuration of the opening (quadrilateral or circular), as well as the depth of the chords, were the varia</p> ... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Nov 15 2022
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
A-mechanical properties of engineered cementitious composite concrete produced from Portland limestone cement
...Show More Authors

Conventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime

... Show More
Publication Date
Fri May 01 2020
Journal Name
Civil Engineering Journal
Post-Fire Behavior of Post-Tensioned Segmental Concrete Beams under Monotonic Static Loading
...Show More Authors

This paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently,

... Show More
Crossref (1)
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Civil Engineering Journal
Calibration of a New Concrete Damage Plasticity Theoretical Model Based on Experimental Parameters
...Show More Authors

The introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The prop

... Show More
Scopus (29)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Sun Jun 06 2021
Journal Name
Materials
Strengthening of Continuous Reinforced Concrete Deep Beams with Large Openings Using CFRP Strips
...Show More Authors

To accommodate utilities in buildings, different sizes of openings are provided in the web of reinforced concrete deep beams, which cause reductions in the beam strength and stiffness. This paper aims to investigate experimentally and numerically the effectiveness of using carbon fiber reinforced polymer (CFRP) strips, as a strengthening technique, to externally strengthen reinforced concrete continuous deep beams (RCCDBs) with large openings. The experimental work included testing three RCCDBs under five-point bending. A reference specimen was prepared without openings to explore the reductions in strength and stiffness after providing large openings. Openings were created symmetrically at the center of spans of the other specimens

... Show More
Scopus (27)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Sun Jan 23 2022
Journal Name
Buildings
Structural Efficiency of Non-Prismatic Hollow Reinforced Concrete Beams Retrofitted with CFRP Sheets
...Show More Authors

Non-prismatic reinforced concrete (RC) beams are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services that this will not result in the distortion of construction features and can reduce heights. The hollow sections (recess) can also be used for the maintenance of large structural sections and the safe passage of utility lines of water, gas, telecommunications, electricity, etc. They are generally used in large and complex civil engineering works like bridges. This study conducted a numerical study using the commercial finite element software ANSYS version 15 for analysing RC beams, hol

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Solving high sulfate content of sand used in concrete by magnetic water process
...Show More Authors

View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref