Mobile-based human emotion recognition is very challenging subject, most of the approaches suggested and built in this field utilized various contexts that can be derived from the external sensors and the smartphone, but these approaches suffer from different obstacles and challenges. The proposed system integrated human speech signal and heart rate, in one system, to leverage the accuracy of the human emotion recognition. The proposed system is designed to recognize four human emotions; angry, happy, sad and normal. In this system, the smartphone is used to record user speech and send it to a server. The smartwatch, fixed on user wrist, is used to measure user heart rate while the user is speaking and send it, via Bluetooth, to the smartphone which in turn sends it to the server. At the server side, the speech features are extracted from the speech signal to be classified by neural network. To minimize the misclassification of the neural network, the user heart rate measurement is used to direct the extracted speech features to either excited (angry and happy) neural network or to the calm (sad and normal) neural network. In spite of the challenges associated with the system, the system achieved 96.49% for known speakers and 79.05% for unknown speakers
This research is devoted to investigate the behavior and performance of reinforced concrete beams strengthened with externally bonded Carbon Fiber Reinforced Polymer (CFRP) laminates under the effect of torsion. In this study a theoretical analysis has been conducted using finite element code ANSYS. Six previously tested beams are used to investigate reinforced concrete beams behavior
under torsion, two of them are solid and the rest are box-section beams. Also, two beams are without CFRP reinforcement, which are used as control beams for the strengthened one, and the other four beams are strengthened with CFRP laminates with different number of layers and spacing. Numerical investigation is conducted on these beams, and comparisons b
In this experimental study, the use of stone powder as a stabilizer to the clayey soil studied. Tests of Atterberg limits, compaction, fall cone (FCT), Laboratory vane shear (LVT), and expansion index (EI) were carried out on soil-stone powder mixtures with fixed ratios of stone powder (0%, 5%, 10%, 15%, and 20%) by the dry weight. Results indicated that the undrained shear strength obtained from FCT and LVT increased at all the admixture ratios, and the expansion index reduced with the increase of the stone powder.
This experimental study focuses on scouring in box culvert inlets under steady-state conditions and at different percentages of blockage ranging from 0% to 65%, and also looks at the hydraulics of water in the culvert. The investigation shows that the blockage of the culverts has influenced the scouring pattern at the blocked culverts' entrances. Ten experiments were carried out at the laboratory to see how blockage impacts the scouring pattern upstream of a box culvert during steady flow. Both partially blocked and unblocked cases were implemented in this study. The experimental tests were done until the equilibrium scour occurred, which took about 3.5 hours of water flow to reach equilibrium conditions. The results r
... Show More An experimental and computational study is conducted to analyze the thermal performance of heat sinks and to pick up more profound information in this imperative field in the electronic cooling. One important approach to improve the heat transfer on the air-side of the heat exchanger is to adjust the fin geometry. Experiments are conducted to explore the impact of the changing of diverse operational and geometrical parameters on the heat sink thermal
performance. The working fluid used is air. Operational parameters includes: air Reynolds number (from 23597 to 3848.9) and heat flux (from 3954 to 38357 W/m
2 ). Conformational parameters includes: change the direction of air flow and the area of conduct
Porous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
P. aeruginosa is a famous bacterium that causes several diseases and has a high ability to be a multidrug resistant organism that is linked with the formation of biofilm. This study aimed to investigate tssC1 gene role in the resistance of different antibiotics in the presence of biofilm. We constructed biofilm for the isolates under the study and showed the effect of different antibiotics on biofilm formation and maturation. The presence of the gene was detected through achieving PCR reaction. Finally, tssC1 gene variation was determined through sequencing and aligning the sequencing products. The results showed that most of the isolates (80%) formed biofilm that played a role in the resistance of different antibiotics which could
... Show MoreThis study was undertaken to provide more insight on the optimum injection temperature used for the production of PE crates, thereby saving time and money, and improving part quality. The work included processing trails of HDPE crates in an injection
molding machine at five temperatures ranged from 220 to 300°C. Both Rheological and mechanical characterization was conducted in order to understand the effect of injection temperature on the properties of crates. Oven aging was also applied for (4 weeks) to evaluate the long-term thermal stability. The results revealed that producing the crates at a temperature range of (260-280 °C) gives the best rheological and mechanical result. The lowest drop in thermal stability has been observed
Twitter is becoming an increasingly popular platform used by financial analysts to monitor and forecast financial markets. In this paper we investigate the impact of the sentiments expressed in Twitter on the subsequent market movement, specifically the bitcoin exchange rate. This study is divided into two phases, the first phase is sentiment analysis, and the second phase is correlation and regression. We analyzed tweets associated with the Bitcoin in order to determine if the user’s sentiment contained within those tweets reflects the exchange rate of the currency. The sentiment of users over a 2-month period is classified as having a positive or negative sentiment of the digital currency using the proposed CNN-LSTM
... Show MoreThe protozoan parasite Entamoeba histolytica is a causative agent of amoebiasis, where it causes millions of cases of dysentery and liver abscess each year. Metronidazole is a drug of choice against amoebiasis. The drug is a choice because of its efficacy and low cost, but at the same time it causes several adverse side effects; therefore, it is important to find effective medications to treat amoebiasis without any complications or any side effects. The aim of this study is to evaluate the effectiveness of different concentrations (50, 75 and 100 µg/ml) of silver nanoparticle (AgNPs) against trophozoites stages of E. histolytica in vitro. The results showed a significant decrease (p ? 0.05) in numbers of trophozoites stages after treated
... Show More