Mobile-based human emotion recognition is very challenging subject, most of the approaches suggested and built in this field utilized various contexts that can be derived from the external sensors and the smartphone, but these approaches suffer from different obstacles and challenges. The proposed system integrated human speech signal and heart rate, in one system, to leverage the accuracy of the human emotion recognition. The proposed system is designed to recognize four human emotions; angry, happy, sad and normal. In this system, the smartphone is used to record user speech and send it to a server. The smartwatch, fixed on user wrist, is used to measure user heart rate while the user is speaking and send it, via Bluetooth, to the smartphone which in turn sends it to the server. At the server side, the speech features are extracted from the speech signal to be classified by neural network. To minimize the misclassification of the neural network, the user heart rate measurement is used to direct the extracted speech features to either excited (angry and happy) neural network or to the calm (sad and normal) neural network. In spite of the challenges associated with the system, the system achieved 96.49% for known speakers and 79.05% for unknown speakers
Background: Fetal macrosomia is usually distressing to obstetricians and neonatologists. In the current study, involved mothers had poor social and medical circumstances, as they were migrated forcefully within the country borders due to war, from their original homeland to safer camps which had miserable situations. Objectives: To study rate, risk factors, and complications of macrosomia in people with low socio-economic living conditions and missed medical follow up. Methods: All internally displaced pregnant women who gave birth to neonates weighed ≥4000 g were involved in the study. All required history, examination, care, and investigations were practiced by the attending obstetrician and neonatologist. Cases of normal birth weight n
... Show MoreThe applications of mobile robots in rescue scenarios, surviving to search, and exploration for outdoor navigation have received increasing attention due to their promising prospects. In this paper, a simulation of a differential wheeled mobile robot was presented, implementing a Global Positioning System (GPS) data points to specified starting points, final destination, and total error.
In this work, a simple kinematic controller for polar coordinate trajectory tracking is developed. The tracking between two points, pose to pose, was specified by using the GPS data points. After that, the geodesy (GEO) formulation was used to convert the geodesy coordinate to Euclidean or polar coordinate. The Haversine equation
... Show More
Roaming data is an important source of information about the political and social activities of a country. And this is true for Iraq situation after 2003 when the mobile companies started their business. In this paper, data of subscribers roamed onto foreign networks (inbound roamers) is collected; it consists of the name of the Radio Control Point, the counter dealing with this type of information, Mobile Network Code/Mobile Country Code tupel. This data is processed. Results obtained out of this process show the classification of the inbound roamers (according to their countries) during the occupation period (2008-2009). These results reflect the political situation of Iraq at that time. Information resulted from this proc
... Show MoreThe aim of this study is to develop a novel framework for managing risks in smart supply chains by enhancing business continuity and resilience against potential disruptions. This research addresses the growing uncertainty in supply chain environments, driven by both natural phenomena-such as pandemics and earthquakes—and human-induced events, including wars, political upheavals, and societal transformations. Recognizing that traditional risk management approaches are insufficient in such dynamic contexts, the study proposes an adaptive framework that integrates proactive and remedial measures for effective risk mitigation. A fuzzy risk matrix is employed to assess and analyze uncertainties, facilitating the identification of disr
... Show MoreIt is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show More