Preferred Language
Articles
/
joe-646
Fabrication of Copper-Graphite MMCs Using Powder Metallurgy Technique
...Show More Authors

Copper, and its, alloys and composites (being the matrix), are broadly used in the electronic as well as bearing materials due to the excellent thermal and electrical conductivities it has.

In this study, powder metallurgy technique was used for the production of copper graphite composite with three volume perc ent of graphite.  Processing parameters selected is (900) °C sintering temperature and (90) minutes holding time for samples that were heated in an inert atmosphere (argon gas). Wear test results showed a pronounced improvement in wear resistance as the percent of graphite increased which acts as solid lubricant (where wear rate was decreased by about 88% as compared with pure Cu). Microhardness and compressive strength increased (about 8% and 16%, for each of them) and reached to the maximum values at 1% graphite percentage as compared with pure Cu, then it decreased after that critical graphite concentration. Microstructure test indicated that the dark region in the copper matrix was increased as the percent of graphite increased and the reinforcement particles were homogeneously distributed which means that the powder metallurgy technique is suitable for such task.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Middle-east Journal Of Scientific Research
Question Classification Using Different Approach: A Whole Review
...Show More Authors

Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Engineering And Technology Journal
Face Retrieval Using Image Moments and Genetic Algorithm
...Show More Authors

Publication Date
Tue Oct 19 2021
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
Object Tracking Using Adaptive Diffusion Flow Active Model
...Show More Authors

Object tracking is one of the most important topics in the fields of image processing and computer vision. Object tracking is the process of finding interesting moving objects and following them from frame to frame. In this research, Active models–based object tracking algorithm is introduced. Active models are curves placed in an image domain and can evolve to segment the object of interest. Adaptive Diffusion Flow Active Model (ADFAM) is one the most famous types of Active Models. It overcomes the drawbacks of all previous versions of the Active Models specially the leakage problem, noise sensitivity, and long narrow hols or concavities. The ADFAM is well known for its very good capabilities in the segmentation process. In this

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Al-nahrain University Science
Breaking Knapsack Cipher Using Population Based Incremental Learning
...Show More Authors

View Publication
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Application
Suggested methods for prediction using semiparametric regression function
...Show More Authors

Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m

... Show More
Preview PDF
Scopus
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Solving Fuzzy Differential Equations by Using Power Series
...Show More Authors

In this paper, the series solution is applied to solve third order fuzzy differential equations with a fuzzy initial value. The proposed method applies Taylor expansion in solving the system and the approximate solution of the problem which is calculated in the form of a rapid convergent series; some definitions and theorems are reviewed as a basis in solving fuzzy differential equations. An example is applied to illustrate the proposed technical accuracy. Also, a comparison between the obtained results is made, in addition to the application of the crisp solution, when the-level equals one.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Adaptive Canny Algorithm Using Fast Otsu Multithresholding Method
...Show More Authors

   In this research, an adaptive Canny algorithm using fast Otsu multithresholding method is presented, in which fast Otsu multithresholding method is used to calculate the optimum maximum and minimum hysteresis values and used as automatic thresholding for the fourth stage of the Canny algorithm.      The new adaptive Canny algorithm and the standard Canny algorithm (manual hysteresis value) was tested on standard image (Lena) and satellite image. The results approved the validity and accuracy of the new algorithm to find the images edges for personal and satellite images as pre-step for image segmentation.  
 

View Publication Preview PDF
Publication Date
Fri Sep 09 2022
Journal Name
Research Anthology On Improving Medical Imaging Techniques For Analysis And Intervention
Groupwise Non-Rigid Image Alignment Using Few Parameters
...Show More Authors

Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff

... Show More
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 05 2017
Journal Name
Asian Journal Of Biological And Life Sciences
Bioethanol Production from Banana Peels using Different Pretreatments
...Show More Authors