Preferred Language
Articles
/
joe-606
Determination of Best Location for Elevated Tank in Branched Network
...Show More Authors

The research focuses on determination of best location of high elevated tank using the required head of pump as a measure for this purpose. Five types of network were used to find the effect of the variation in the discharge and the node elevation on the best location. The most weakness point was determined for each network. Preliminary tank locations were chosen for test along the primary pipe with same interval distance. For each location, the water elevation in tank and pump head was calculated at each hour depending on the pump head that required to achieve the minimum pressure at the most weakness point. Then, the sum of pump heads through the day was determined. The results proved that there is a most economical location where the energy consumption is minimum. This location joined with the branched line that containing the most weakness point. The best location didn’t join with the highest demand location unless this location containing the most weakness point.  The results indicated that the moving of tank away from best location in pump direction result in pump head increasing that exceed the increasing in pump head when the tank moves in the opposite direction. The location of tank beside the pump station was the worst location. Also, the results showed that as the distance between the pump and the highest demand become shorter, the required pump head become less. The uniform demand distribution required the least amount of pump head, it required minimum head of (554)m while the networks, that have highest demand at distance 200m,400m, and 1000m from the pump station,  required minimum head of 651m, 682m, and 726m respectively.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Enhancing the Delta Training Rule for a Single Layer Feedforward Heteroassociative Memory Neural Network
...Show More Authors

In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.

Publication Date
Wed Jan 01 2020
Journal Name
International Conference Of Numerical Analysis And Applied Mathematics Icnaam 2019
Functionalized multi-walled carbon nanotubes network sensor for NO2 gas detection at room temperature
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Apr 03 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
An Integrated Grasshopper Optimization Algorithm with Artificial Neural Network for Trusted Nodes Classification Problem
...Show More Authors

Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Sep 01 2013
Journal Name
Baghdad Science Journal
Determination of Testosterone level as predictor for insulin resistance in young men with family history of type2 diabetes and hypertension.
...Show More Authors

Background: Insulin resistance is associated with metabolic syndrome , type 2 diabetes and representing a risk factor for cardiovascular disease . This relationship may be modulated to some extent by age related changes in sex hormone status.. In particular, reduced total testosterone (TT) levels have been associated with insulin resistance and subsequent risk for developing type 2 diabetes. Aim of study: we examined whether low total testosterone level were associated with insulin resistance in young adult men. Methods: a total of 83 men (young adult men) divided into 2 group : (group1 ) 49 men with a risk factor for insu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 09 2018
Journal Name
Al-khwarizmi Engineering Journal
Neural Network Modeling of Cutting Force and Chip Thickness Ratio for Turning Aluminum Alloy 7075-T6
...Show More Authors

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. T

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Water Practice & Technology
Artificial neural network and response surface methodology for modeling oil content in produced water from an Iraqi oil field
...Show More Authors
ABSTRACT<p>The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value &lt;0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe</p> ... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Engineering
Impact of the Weir Slit Location, the Flow Intensity and the Bed Sand on the Scouring Area and Depth at the Dam Upstream
...Show More Authors

A total of 48 experiments were conducted to investigate the impact of slit weir dimensions and locations on the maximum scour depth and scour area created upstream. The slit weir model was a 110 mm slit opening, and it was installed at the end of the working section in a laboratory flume. The flume was 10.0 m long, 30 cm wide, 30 cm deep, and almost middle. It includes a 2 m working section with a mobile bed with 110 mm in thickness. In the mobile bed, two types of nonuniform sand (with a geometric standard deviation of 1.58 and 1.6) were tested separately. The weir dimensions and location were changed with flow rates. Then dimensions of the slit weir were changed from 60 x 110 mm to 60 x 70 mm (width x height), while th

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 06 2010
Journal Name
Baghdad Science Journal
Rapid Spectrophotometric Determination of Phenoxazine
...Show More Authors

A rapid high sensitive and inexpensive economic method has been developed for the Determination of phenoxazine by using molecular spectrophotometry. The method is based on the oxidation of phenoxazine by potassium (meta)periodate in acidic medium. The oxidation conditions were selected to enhance the sensitivity and the stability of the pink colored species which shows an absorption maximum at 530 nm. The Beer’s law was obeyed for phenoxazine concentration range from 1 to 6 µg mL-1 with 0.003 µg mL-1 detection limit and provided variation coefficients between 0.4 to 1.7 %. This method was successfully applied for the determination of phenoxazine in aqueous samples

View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Mobile Position Estimation using Artificial Neural Network in CDMA Cellular Systems
...Show More Authors

Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha

... Show More
View Publication Preview PDF