This paper describes flexural behavior of two spans continuous rectangular concrete beams reinforced with mild steel and partially prestressing strands, to evaluate using different prestressing level and prestressing area in continuous prestressed beams at serviceability and ultimate stages. Six continuous concrete beams with 4550 mm length reinforced with mild steel reinforcement and partially prestressed with two prestressing levels of (0.7fpy or 0.55fpy.) of and different amount of 12.7 mm diameter seven wire steel strand were used. Test results showed that the partially prestressed reinforced beams with higher prestressing level exhibited the narrowest crack width, smallest deflection and strain in both steel and concrete at ultimate service load, the deflection decreased by (3.60% & 32.49%) and the crack width decreased by (20.0%) and (75.0%) when increasing the prestressing level from (0.55fpy.) to (0.7fpy.) for beams reinforced with one and two strands respectively. Deflection of beams with two strands decreased by (44.81% & 22.2%) compared with beams of one strand at prestressing level of (0.7fpy.) and (0.55 fpy.), respectively. At ultimate load, using ACI-Code recommended moment redistribution led to more agreement between theoretical and experimental loads for both ordinary reinforced and partially prestressed beams.
Roller compacted concrete (RCC) is a concrete compacted by roller compaction. The concrete mixture in its unhardened state must support a roller while being compacted. The aim of this research work was to investigate the behavior and properties of roller compacted concrete when constructed in the laboratory using roller compactor manufactured in local market to simulate the field conditions. The roller compaction was conducts in three stages; each stage has different loading and number of passes of the roller. For the first stage, a load of (24) kg and (5) passes in each direction had been employed. For the second stage, a load of (104) kg and (10) passes in each direction were conducted. Finally, at the third stage, a load of (183) kg a
... Show MoreA good performance of reinforced concrete structures is ensured by the bond between steel and concrete, which makes the materials work together, forming a part of solidarity. The behavior of the bond between the reinforcing bar and the surrounding concrete is significant to evaluate the cracking control in serviceability limit state and load capacity in the ultimate limit state. In this investigation, the bond stresses between reinforcing bar and reactive powder concrete (RPC) was considered to compare it with that of normal strength concrete (NSC). The push-out test with short embedment length is considered in this study to evaluate the bond strength, bond stress-slip relationship, and bond stress-crack width relationsh
... Show MoreZinc Oxide is an indispensable substance in the field of dental treatment. It is used daily and intensively in all governmental and private dental clinics, leading to the disposal of very high concentrations of zinc with waste and eventually in landfill sites as a final destination for solid waste removal. This indicates the urgent need to investigate its behavior upon disposal due to the surrounding conditions. Approximately 4195 g of mixed dental waste samples were collected from (17) healthcare centers in Baghdad Al-Karkh. The leaching behavior of ZnO powder was investigated through batch reactors using makeup dental solid waste samples. The ZnO leaching was tested with 3 conditions; acidic, alkaline, and Ionic Streng
... Show MoreThis paper deals with the nonlinear large-angle bending dynamic analysis of curved beams which investigated by modeling wave’s transmission along curved members. The approach depends on the wave propagation in one-dimensional structural element using the method of characteristics. The method of characteristics (MOC) is found to be a suitable method for idealizing the wave propagation inside structural systems. Timoshenko’s beam theory, which includes transverse shear deformation and rotary inertia effects, is adopted in the analysis. Only geometrical non-linearity is considered in this study and the material is assumed to be linearly elastic. Different boundary conditions and loading cases are examined.
From the results obtai
... Show MoreThe electron mirror phenomenon has been explored to describe the behavior of a probing electron trajectory inside the chamber of scanning electron microscope (SEM). This investigation has been carried out by means of the modulated mirror plot curve technique. This method is based on expanding sample potential to a multipolar form to detect the actual distribution of the trapped charges. Actually an experimental result is used to guiding results of this work toward the accurate side. Results have shown that the influence of each type of multipolar arrangement (monopole, dipole, quadruple, octopole … etc.) mainly depends on the driving potential.
The determination of aerodynamic coefficients by shell designers is a critical step in the development of any projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in this speed regime that the critical aerodynamic behavior occurs and a rapid change in the aerodynamic coefficients is observed. Two-dimensional, transonic, flow field computations over projectiles have been made using Euler equations which were used for solution with no special treatment required. In this work a solution algorithm is based on finite difference MacCormack’s technique for solving mixed subsonic-supersonic flow problem. Details of the asymmetrically located shock waves on the projectiles hav
... Show MoreThis work presents an innovative approach to enhancing the performance of concrete with reclaimed asphalt pavement (RAP) aggregates using titanium dioxide (TiO2) nanoparticles. Traditional limestone coarse aggregates were partially replaced with 30% and 50% RAP aggregates; a subset of mixtures containing RAP aggregates was treated with TiO2 nanoparticles. The rheological, mechanical, and long-term properties of concrete, along with changes in its chemical composition following the addition of RAP and TiO2, were evaluated. Results revealed that using 30% and 50% RAP in concrete mixtures reduced their compressive strength by 18% and 27%, respectively. However, using TiO2 in those mixtures enhanced their compressive strength by 8.7% an
... Show MoreThis paper is devoted to investigate the effect of internal curing technique on the properties of self-compacting concrete (SCC). In this study, SCC is produced by using silica fume (SF) as partial replacement by weight of cement with percentage of (5%), sand is partially replaced by volume with saturated fine lightweight aggregate (LWA) which is thermostone chips as internal curing material in three percentages of (5%, 10% and 15%) for SCC, two external curing conditions water and air. The experimental work was divided into three parts: in the first part, the workability tests of fresh SCC were conducted. The second part included conducting compressive strength test and modulus of rupture test at ages of (7, 28 and 90). The third part i
... Show MoreThe aims of this study are to measure the defect rate and analyze the problems of production of ready concrete mixture plant by using Six Sigma methodology which is a business strategy for operations improvement depending basically on the application of its sub-methodology DMAIC improvement cycle and the basic statistical tools where the process sigma level of concrete production in the case study was 2.41 σ.