This paper describes flexural behavior of two spans continuous rectangular concrete beams reinforced with mild steel and partially prestressing strands, to evaluate using different prestressing level and prestressing area in continuous prestressed beams at serviceability and ultimate stages. Six continuous concrete beams with 4550 mm length reinforced with mild steel reinforcement and partially prestressed with two prestressing levels of (0.7fpy or 0.55fpy.) of and different amount of 12.7 mm diameter seven wire steel strand were used. Test results showed that the partially prestressed reinforced beams with higher prestressing level exhibited the narrowest crack width, smallest deflection and strain in both steel and concrete at ultimate service load, the deflection decreased by (3.60% & 32.49%) and the crack width decreased by (20.0%) and (75.0%) when increasing the prestressing level from (0.55fpy.) to (0.7fpy.) for beams reinforced with one and two strands respectively. Deflection of beams with two strands decreased by (44.81% & 22.2%) compared with beams of one strand at prestressing level of (0.7fpy.) and (0.55 fpy.), respectively. At ultimate load, using ACI-Code recommended moment redistribution led to more agreement between theoretical and experimental loads for both ordinary reinforced and partially prestressed beams.
The aim of this paper is to determine the flexural moment capacity of Reactive Powder Concrete (RPC) two-way slabs based on three models proposed by previous studies (Model 1, Model 2, and Model 3). The results obtained from these models were compared with those obtained from experimental work to check the accuracy and the applicability of the adopted theoretical models. The experimental program included the testing of three simply supported RPC two-way slabs (1000x1000x70) mm each. The tested specimens had identical properties except their steel fibres volume ratios (0.5 %, 1 %, and 1.5 %). The comparison with the experimental data showed that (Model 3) is the most suitable one among the three models. Model 1 was found to underestimate the
... Show MoreIn this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
This manuscript investigated the effect of anchorage CFRP wrapping sheets, bolts, and laminate interlock on increasing the efficiency of flexural strengthening for the post-tension girder using CFRP composites techniques longitudinal laminates at the soffit for partially damaged loss of about 14.3% from its area of prestressed concrete beams, and the impact on restoring the original flexural capacity of PC girder. Mitigating delamination of the soffit of horizontal laminates (CFRP). The texture of the laminate and anchorages influenced the stress of the laminate carbon fiber, the mode of crack propagation and failure, and consequently, the beam's attitude has been investigated in this manuscript. The experimental findi
... Show MoreGFRP was employed in constructions as an alternative to steel, which has many advantages like lightweight, large tensile strength and resist corrosion. Existing researches are insufficient in studying the influence of hybrid reinforced concrete composite columns encased by GFRP I-section (RCCCEG) and I-section steel (RCCCES). In this study twenty one (RC) specimens of a cross-section of 130 mm × 160 mm, with different length (long 1600 mm and short 750 mm) were encased by using I-section (steel and GFRP) and tested under various loading (concentric, eccentric and flexural loads). The test was focused on the influence of many parameters; load-carrying capacity, mode of failure, deformation and drawing an interaction diagram (N-
... Show MoreThrust blocks and restraint joints are the two most popular methods of counteracting the thrust force that generated at pipe fittings (bends, Tee, wye, reducers, dead ends, etc…). Both systems perform the same function, which is to prevent the joints from separating from the pipes. The aim of the study is to review previous studies and scientific theories related to the study and design of thrust blocks and restraint joints to study the behavior of both systems under thrust force and to study the factors and variables that affect the behavior of these systems. The behavior of both systems must be studied because they cannot be abandoned, as each system has conditions whose use is more feasible, scientific, and economic
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model a
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t
... Show MoreConcrete structures is affected by a deleterious reaction, which is known as Alkali Aggregate Reaction (AAR). AAR can be defined as a chemical reaction between the alkali content in the pore water solution of the cement paste and reactive forms of silica hold in the aggregate. This internal reaction produces expansion and cracking in concrete, which can lead to loss of strength and stiffness. Carbon fiber-reinforced polymer (CFRP) is one of the methods used to suppress further AAR expansion and rehabilitate and support damaged concrete structures. In this research, thirty-six cylindrical specimens were fabricated from non-reactive and reactive concrete, which contained fused silica as
One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t
... Show More