Preferred Language
Articles
/
joe-586
Prediction of the Effect of Using Stone Column in Clayey Soil on the Behavior of Circular Footing by ANN Model
...Show More Authors

Shallow foundations are usually used for structures with light to moderate loads where the soil underneath can carry them. In some cases, soil strength and/or other properties are not adequate and require improvement using one of the ground improvement techniques. Stone column is one of the common improvement techniques in which a column of stone is installed vertically in clayey soils. Stone columns are usually used to increase soil strength and to accelerate soil consolidation by acting as vertical drains. Many researches have been done to estimate the behavior of the improved soil. However, none of them considered the effect of stone column geometry on the behavior of the circular footing. In this research, finite element models have been conducted to evaluate the behavior of a circular footing with different stone column configurations. Moreover, an Artificial Neural Network (ANN) model has been generated for predicting these effects. The results showed a reduction in the bending moment, the settlement, and the vertical stresses with the increment of the stone column length, while both the horizontal stress and the shear force were increased. ANN model showed a good relationship between the predicted and the calculated results.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Effect of Adding Sand on Clayey Soil Shear Strength
...Show More Authors
Abstract<p>The effect of adding sand on clayey soil shear strength is investigated in this study. Five different percentage of clay-sand mixtures are used; 100% clay with 0% sand termed 100C, 60% clay with 40% sand termed 60C-40S, 30% clay with 70% sand termed 30C-70S, 15% clay with 85% sand termed 15C-85S, and as well as 100% sand termed 100S. The used clay was obtained from Baghdad city in Iraq and classified as CH soil, while the used sand was taken from Al-Khider area from Iraq and classified as SW soil. The initial dry unit weight for all mixtures is 16 kN/m<sup>3</sup>. The results show that the variations of the soil shear strength properties with soil components content changes</p> ... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed Nov 28 2018
Journal Name
International Journal Of Engineering &amp; Technology
Crude Oil Effect on the Clayey Soil Mechanical and Physical Properties
...Show More Authors

Soil defilement with "raw petroleum" is a standout amongst the most across the board and genuine ecological issues going up against both the industrialized and oil country like Iraq. Along these lines, the impact of "raw petroleum" on soil contamination is one of most critical subjects that review these days. The present examination expects to research "unrefined oil"effectson the mechanical and physical properties of clayey soils. The dirt examples were acquired from Al-Doura area in Baghdad city and arranged by the "Brought together Soil Grouping Framework (USCS)" as silty mud of low pliancy (CL). Research center tests were done on contaminated and unpolluted soil tests with same thickness. The dirtied tests are set up by blending

... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Effect of Variation of Degree of Saturation with depth on Soil–Concrete Pile Interface in Clayey Soil
...Show More Authors

Bearing capacity of a concrete pile in fine grained cohesive soils is affected by the degree of saturation of the surrounding soil through the contribution of the matric suction. In addition, the embedded depth and the roughness of the concrete pile surface (expressed as British Pendulum Number BPN) also have their contribution to the shear strength of the concrete pile, consequently its bearing capacity. Herein, relationships among degree of saturation, pile depth, and surface roughness, were proposed as a mathematical model expressed as an equation where the shear strength of a pile can be predicted in terms of degree of saturation, depth, and BPN. Rel

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Journal Of Engineering Science And Technology
Using sustainable material in improvement the geotechnical properties of soft clayey soil
...Show More Authors

Preview PDF
Scopus (41)
Scopus
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
EFFECT OF STEEL FIBERS ADDITION ON THE BEHAVIOR OF HIGH STRENGTH CONCRETE CIRCULAR SHORT COLUMNS
...Show More Authors

loaded reinforced concrete circular short columns. An experimental investigation into the behavior
of 24 short reinforced concrete columns with and without steel fibers was carried out. The columns
had a circular section (200 mm diameter and 900 mm long). Test variables include concrete
strength, spacing of spiral reinforcement, and inclusion of steel fibers. The axial stress and axial
strains were obtained and used to evaluate the effects of the presence of steel fibers. It was found
that the addition of steel fibers slightly improves the load carrying capacity of the tested columns
whereas it significantly enhances the ductility of these specimens. Test results also indicated that for
the same confinement parameter

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Oct 20 2021
Journal Name
Journal Of Engineering Research
Effect of several patterns of floating stone columns on the bearing capacity and porewater pressure in saturated soft soil
...Show More Authors

One of the common geotechnical problems is the construction on soft soil and the improvement of its geotechnical properties to meet the design requirements. A stone column is one of the well-known techniques used to improve the geotechnical properties of soft soils. Sometimes thick layers of soft soil imposed the designer to use floating stone columns for improvement of such soil; in this case, the designer will be lost the end bearing of the stone column. In this study, the effects of several patterns of floating stone columns distribution under footing on the bearing capacity of soil and the distribution of excess porewater pressure are investigated. The soft soil used in this study has a very low undrained shear strength (cu) of

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Hydrated Lime Effects on Geotechnical Properties of Clayey Soil
...Show More Authors

Cohesive soils present difficulties in construction projects because it usually contains expansive clay minerals. However, the engineering properties of cohesive soils can be stabilized by using various techniques. The research aims to elaborate on the influences of using hydrated lime on the consistency, compaction, and shear strength properties of clayey soil samples from Sulaimnai city, northern Iraq. The proportions of added hydrated lime are 0%, 2.5%, 5%, 7.5% and 10% to the natural soil sample. The results yielded considerable effects of hydrated lime on the engineering properties of the treated soil sample and enhancement its strength. The soil's liquid limit, plasticity index, and optimum moisture content were de

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Jan 03 2021
Journal Name
Al-qadisiyah Journal For Engineering Sciences
Bearing Capacity of Square Footing Resting on Layered Soil
...Show More Authors

The bearing capacity of layered soil studies was carried out with various approaches such as experimental, theoretical, numerical, and combination of them. This work is focused on the settlement and bearing capacity of shallow foundations subjected to the vertical load placed on the surface of layered soils. The experimental part was performed by manufacturing soil cubic container (570 mm x 570 mm x 570 mm).  A model square footing of width 60 mm was placed at the surface of the soil bed. The relative density of sand was constant at 60%, and the clay was prepared with a density of 19.2 (kN/m3) and water content of 14.6%. PLAXIS 3D FEM was used to simulate the experimental tests and performing a parametric study. The results showed

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
An Experimental Study of Compaction and Strength of Stabilized Cohesive Soil by Stone Powder
...Show More Authors

The In this experimental study, natural stone powder was utilized to improve a cohesive soil’s compaction and strength properties. According to the significant availability of limestone in the globe, it has been chosen for the purpose of the study, in addition to considering the existing rock industry massive waste. Stone powder was used in percentages of 4, 8, 12, 16% replaced from the soil weight in dry state. Some of cohesive soil’s consistency, shear, and compaction properties were depicted after improvement. The outcomes yielded in significant amendments in the experimented geotechnical properties after stone powder addition considering 60 days curing period. Cohesion and friction angle were notably increased by

... Show More
View Publication Preview PDF
Crossref (1)
Crossref