Preferred Language
Articles
/
joe-576
Seismic Response of Nonseismically Designed Reinforced Concrete Low Rise Buildings
...Show More Authors

In this paper, the time-history responses of a square plan two-story reinforced concrete prototype building, considering the elastic and inelastic behavior of the materials, were studied numerically. ABAQUS software was used in three-dimensional (3D) nonlinear dynamic analysis to predict the inelastic response of the buildings. Concrete Damage Plasticity Model (CDPM) has been used to model the inelastic behavior of the reinforced concrete building under seismic excitation. The input data included geometric information, material properties, and the ground motion. The building structure was designed only for gravity load according to ACI 318 with non-seismically detailing requirements. The prototype building was subjected to El Centro 1940 NS earthquake at different amplitudes (PGA=0.05g, PGA=0.15g, and PGA=0.32g). The elastic and inelastic responses of the 3D numerical model of the same building were evaluated. The differences between the elastic and inelastic displacements and base shear forces were analyzed. It was found from the results that base shear responses are significantly more sensitive to the numerical model of analysis than displacement responses. The evaluation showed that the base shear force and displacement responses of a two-story R.C. building subjected to severe earthquake excitation are very sensitive to the numerical model used whether it is elastic or inelastic.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Structural performance of fiber-reinforced lightweight concrete slabs with expanded clay aggregate
...Show More Authors

Crossref (2)
Crossref
Publication Date
Mon Oct 21 2019
Journal Name
Civil Engineering Journal
Non-Smooth Behavior of Reinforced Concrete Beam Using Extended Finite Element Method
...Show More Authors

Flexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams w

... Show More
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Mar 10 2022
Journal Name
Buildings
Behavior of One-Way Reinforced Concrete Slabs with Polystyrene Embedded Arched Blocks
...Show More Authors

This study presents experimental and numerical investigations on seven one-way, reinforced concrete (RC) slabs with a new technique of slab weight reduction using polystyrene-embedded arched blocks (PEABs). All slabs had the same dimensions, steel reinforcement, and concrete compressive strength. One of these slabs was a solid slab, which was taken as a control slab, while the other six slabs were cast with PEABs. The main variables were the ratio of the length of the PEABs to the length of the slab (lp/L) and the ratio of the height of the PEABs to the total slab depth (hP/H). The minimum decrease in the ultimate load capacity was about 6% with a minimum reduction in the slab weight of 15%. In contrast, the maximum decrease in the

... Show More
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Journal Of Engineering
Nonlinear Finite Element Analysis of Fiber Reinforced Concrete Pavement under Dynamic Loading
...Show More Authors

The analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Mar 20 2025
Journal Name
3rd International Conference On Construction Engineering At: Damascus, Syria
Investigation on the Moment-Curvature Relationship in GFRP Reinforced Concrete Beams
...Show More Authors

Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Retrofitting Reinforced Concrete One–Way Damaged Slabs Exposed to High Temperature
...Show More Authors

Exposure of reinforced concrete buildings to an accidental fire may result in cracking and loss in the bearing capacity of their major components, columns, beams, and slabs. It is a challenge for structural engineers to develop efficient retrofitting techniques that enable RC slabs to restore their structural integrity, after being exposed to intense fires for a long period of time. Experimental
investigation was carried out on twenty one slab specimens made of self compacting concrete, eighteen of them are retrofitted with CFRP sheets after burning and loading till failure while three of them (which represent control specimens) are retrofitted with CFRP sheet after loading till failure without burning. All slabs had been tested in a

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Advances In Structural Engineering
Simulation and design model for reinforced concrete slabs with lacing systems
...Show More Authors

Lacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Advances In Structural Engineering
Simulation and design model for reinforced concrete slabs with lacing systems
...Show More Authors

Lacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of The Mechanical Behavior Of Materials
Efficiency of CFRP torsional strengthening technique for L-shaped spandrel reinforced concrete beams
...Show More Authors
Abstract<p>The present study aims to get experimentally a deeper understanding of the efficiency of carbon fiber-reinforced polymer (CFRP) sheets applied to improve the torsional behavior of L-shaped reinforced concrete spandrel beams in which their ledges were loaded in two stages under monotonic loading. An experimental program was conducted on spandrel beams considering different key parameters including the cross-sectional aspect ratio (<italic>i.e.</italic>, web height/web thickness), and the availability of the CFRP strengthening system. The ledge of the spandrel beams was exposed during testing to a very high eccentric load, which was transferred to the web of the spandrel beam </p> ... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Verification and Parametric Analysis of Shear Behavior of Reinforced Concrete Beams using Non-linear Finite Element Analysis
...Show More Authors

Many researchers have tackled the shear behavior of Reinforced Concrete (RC) beams by using different kinds of strengthening in the shear regions and steel fibers. In the current paper, the effect of multiple parameters, such as using one percentage of Steel Fibers (SF) with and without stirrups, without stirrups and steel fibers, on the shear behavior of RC beams, has been studied and compared by using Finite Element analysis (FE). Three-dimensional (3D) models of (RC) beams are developed and analyzed using ABAQUS commercial software. The models were validated by comparing their results with the experimental test. The total number of beams that were modeled for validation purposes was four. Extensive pa

... Show More
View Publication Preview PDF
Crossref