Preferred Language
Articles
/
joe-574
Estimation of Minimum Miscibility Pressure for 〖CO〗_2 Flood Based on EOS
...Show More Authors

CO2 Gas is considered one of the unfavorable gases and it causes great air pollution. It’s possible to decrease this pollution by injecting  gas in the oil reservoirs to provide a good miscibility and to increase the oil recovery factor. MMP was estimated by Peng Robinson equation of state (PR-EOS). South Rumila-63 (SULIAY) is involved for which the miscible displacement by  is achievable based on the standard criteria for success EOR processes. A PVT report was available for the reservoir under study. It contains deferential liberation (DL) and constant composition expansion (CCE) tests.  PVTi software is one of the (Eclipse V.2010) software’s packages, it has been used to achieve the goal.  Many trials have been done to match the data of DL test by tuning some of the PR-EOS parameters through the regression analysis process, but no acceptable match was obtained especially for saturation pressure. However; splitting the mole fraction of (C6+) to many pseudo components was carried out, and then a regression analysis process was made again to improve the matching by tuning some of the PR-EOS parameters. A good estimate of saturation pressure and a good match of PVT properties was noted. Ternary diagram has been constructed to represent the phase behavior of -Oil and to calculate MMP for the South Rumila-63 (SULIAY) oil well.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
Hazard Rate Estimation Using Varying Kernel Function for Censored Data Type I
...Show More Authors

     In this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used:  local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 10 2021
Journal Name
Journal Of Physics
A novel kite cross hexagonal search algorithm for fast block motion estimation
...Show More Authors

The performance quality and searching speed of Block Matching (BM) algorithm are affected by shapes and sizes of the search patterns used in the algorithm. In this paper, Kite Cross Hexagonal Search (KCHS) is proposed. This algorithm uses different search patterns (kite, cross, and hexagonal) to search for the best Motion Vector (MV). In first step, KCHS uses cross search pattern. In second step, it uses one of kite search patterns (up, down, left, or right depending on the first step). In subsequent steps, it uses large/small Hexagonal Search (HS) patterns. This new algorithm is compared with several known fast block matching algorithms. Comparisons are based on search points and Peak Signal to Noise Ratio (PSNR). According to resul

... Show More
Preview PDF
Scopus (2)
Scopus
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using jack knife to estimation logistic regression model for Breast cancer disease
...Show More Authors

 

It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values  (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Pre-operative serum TSH level estimation for predicting malignant nodular thyroid disease
...Show More Authors

Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
About Semi-parametric Methodology for Fuzzy Quantile Regression Model Estimation: A Review
...Show More Authors

In this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce

Paper Type: Review article.

another suggestion based on artificial neural networks.

View Publication Preview PDF
Crossref
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using jack knife to estimation logistic regression model for Breast cancer disease
...Show More Authors

 

It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values  (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 30 2025
Journal Name
Ieee Access
Optic Flow Estimation for Human Spine Movements Using a Motion Capture System
...Show More Authors

Human interaction technology based on motion capture (MoCap) systems is a vital tool for human kinematics analysis, with applications in clinical settings, animations, and video games. We introduce a new method for analyzing and estimating dorsal spine movement using a MoCap system. The captured data by the MoCap system are processed and analyzed to estimate the motion kinematics of three primary regions; the shoulders, spine, and hips. This work contributes a non-invasive and anatomically guided framework that enables region-specific analysis of spinal motion which could be used as a clinical alternative to invasive measurement techniques. The hierarchy of our model consists of five main levels; motion capture system settings, marker data

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Mon Sep 01 2025
Journal Name
Microbial Biosystems
Harnessing cyanobacteria for a greener tomorrow: CO₂ mitigation and bioconversion to sustainable chemicals and fuels
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Applied And Computational Mathematics
Reliable computational methods for solving Jeffery-Hamel flow problem based on polynomial function spaces
...Show More Authors

Scopus (7)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jul 19 2024
Journal Name
An International Journal Of Optimization And Control: Theories & Applications (ijocta)
Design optimal neural network based on new LM training algorithm for solving 3D - PDEs
...Show More Authors

In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref