Preferred Language
Articles
/
joe-543
Numerical Simulation of Thermal-Hydrodynamic Behavior within Solar Air Collector
...Show More Authors

Solar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation results demonstrated that at same insolation; airflow, ground and air temperatures increase when the collector radius decreases towards the collector center. The ground temperature and air velocity increase, while airflow temperature decreases when the inclination angle increases from 0° to 20° due to changing in airflow movement. More decreasing in airflow temperature has been occurred when the inlet height increases from 0.1m to 0.25m. The simulation results were validated by comparing with the experimental data. In conclusions, the obtained results showed the capability of producing warm airflow to generate electricity in Baghdad city.  

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Evergreen
Development, Validation, and Performance Evaluation of An Air-Driven Free-Piston Linear Expander Numerical Model
...Show More Authors

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sun Jun 30 2024
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Gas Lift Optimization for Zubair Oil Field Using Genetic Algorithm-Based Numerical Simulation: Feasibility Study
...Show More Authors

The gas-lift method is crucial for maintaining oil production, particularly from an established field when the natural energy of the reservoirs is depleted. To maximize oil production, a major field's gas injection rate must be distributed as efficiently as possible across its gas-lift network system. Common gas-lift optimization techniques may lose their effectiveness and become unable to replicate the gas-lift optimum in a large network system due to problems with multi-objective, multi-constrained & restricted gas injection rate distribution. The main objective of the research is to determine the possibility of using the genetic algorithm (GA) technique to achieve the optimum distribution for the continuous gas-lift injectio

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study and Numerical Simulation of Sheet Hydroforming Process for Aluminum Alloy AA5652
...Show More Authors

 Abstract   

Lightweight materials is used in the sheet metal hydroforming process,  because it can be adapted to the manufacturing of complex structural components into a single body with high structural stiffness. Sheet hydroforming has been successfully developed in industry such as in the manufacturing of the components of automotive.The aim of this study is to simulate the experimental results ( such as the amount of pressure required to hydroforming process, stresses, and strains distribution)  with results  of finite element analyses (FEA)  (ANSYS 11)  for aluminum alloy (AA5652) sheets with  thickness (1.2mm) before heat treatm

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
Numerical Simulation of Immiscible CO2-Assisted Gravity Drainage Process to Enhance Oil Recovery
...Show More Authors

The Gas Assisted Gravity Drainage (GAGD) process has become one of the most important processes to enhance oil recovery in both secondary and tertiary recovery stages and through immiscible and miscible modes.  Its advantages came from the ability to provide gravity-stable oil displacement for improving oil recovery, when compared with conventional gas injection methods such as Continuous Gas Injection (CGI) and Water – Alternative Gas (WAG). Vertical injectors for CO2   gas were placed at the top of the reservoir to form a gas cap which drives the oil towards the horizontal oil producing wells which are located above the oil-water-contact. The GAGD process was developed and tested in vertical wells to increase oil r

... Show More
Crossref (5)
Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Numerical Computations of Transonic Critical Aerodynamic Behavior of a Realistic Artillery Projectile
...Show More Authors

The determination of aerodynamic coefficients by shell designers is a critical step in the development of any projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in this speed regime that the critical aerodynamic behavior occurs and a rapid change in the aerodynamic coefficients is observed. Two-dimensional, transonic, flow field computations over projectiles have been made using Euler equations which were used for solution with no special treatment required. In this work a solution algorithm is based on finite difference MacCormack’s technique for solving mixed subsonic-supersonic flow problem. Details of the asymmetrically located shock waves on the projectiles hav

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Design and Implementation of an Automatic Control for Two Axis Tracking System for Applications of Concentrated Solar Thermal Power
...Show More Authors

The present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without trackin

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Petroleum Science And Engineering
Effect of wettability on particle settlement behavior within Mono-Ethylene Glycol regeneration pre-treatment systems
...Show More Authors

This study was undertaken to diagnose routine settling problems within a third-party oil and gas companies’ Mono-Ethylene Glycol (MEG) regeneration system. Two primary issues were identified including; a) low particle size (<40 μm) resulting in poor settlement within high viscosity MEG solution and b) exposure to hydrocarbon condensate causing modification of particle surface properties through oil-wetting of the particle surface. Analysis of oil-wetted quartz and iron carbonate (FeCO₃) settlement behavior found a greater tendency to remain suspended in the solution and be removed in the rich MEG effluent stream or to strongly float and accumulate at the liquid-vapor interface in comparison to naturally water-wetted particles. As su

... Show More
Scopus (13)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
Experimental Study of the Thermal Performance of Flat Plate Solar Collectors Array by Different Connection Configurations
...Show More Authors

The current research illustrates experimentally the effect of series and parallel connection (Z-I Configurations) of flat plate water solar collectors array on the thermal performance of closed loop solar heating system. The study includes the effect of changing the water flow rate on the thermal efficiency. The results show that, the collector's efficiency in series connection is higher than the parallel connection within flow rate level less than (100) ℓ/hr. Moreover, the collector efficiency in parallel connection of (I-Configurations) is more than the (Z- Configurations) with increasing the water flow rate .The maximum daily efficiency for parallel (I-Configurations) and (Z- Configurations) are (55%) and (51%) at w

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
Effect of the Proposed Outlets on the Hydrodynamic Behavior and Water Quality of the South-West Part of the Al Hammar Marsh
...Show More Authors

The current study aims to find a new plan to manage the water quality of the western part of the Hammar Marsh to reduce the salts that cause problems for the marshes and preserve their environmental life by isolating the southwestern part of the Hammar Marsh by closing the outlet under the railway embankment. The outlet is discharging saline water to the east-western part of Al Hammar Marsh. After isolating the southwestern part of the marsh, a new outlet is proposed. The impact of the flow hydrodynamics on improving the water quality was simulated using the SMS model. The hydrodynamics and water quality simulation models for the marsh are : a hydrodynamic model and average depth (SMS RMA2) and a two-dimensional water quality model (SMS

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 27 2021
Journal Name
Journal Of Engineering
Design and Simulation of a controller for Double Fed Induction Generator turbine Utilized Solar Up Draft Tower
...Show More Authors

This paper introduces a complete design and simulation of a controller for the double fed induction generator (DFIG) turbine. The work also included the solar updraft tower (SUT) design to supply Al-Mahmoudia hospital in Baghdad/Iraq. The design includes the daily average load estimation, annual solar irradiance and, temperature monitoring, and logging.

According to the data obtained from the Ministry of Science and Technology, Baghdad has low wind speed. Therefore, the (SUT) has been designed to generate electrical power depending on the difference between the external and internal air temperature. The temperature difference will generate a suitable airspeed to drive the wind turbine, connected to the proposed (DFIG) generators

... Show More
View Publication Preview PDF
Crossref (1)
Crossref