A tungsten inert gas (TIG) welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys. However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15) min. was used. All peened and unpeened, and welded and unwelded samples were characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring during welding process. Tensile test and Vickers micro-hardness measurements were performed for all samples to investigate the effect of shoot peening on mechanical properties of welded aluminum.
The results indicated a significant improvement in properties for peened welded and unwelded samples compared with those unpeened one. Also, the results showed that the tensile and microhardness properties were increased with increasing the time of exposure to 15 min. due to generation of compressive residual stresses at surface.
Objectives: The study objectives are to determine the impact of education program upon the academic nurses'
practice concerning documentation of nursing sheets, and to find out the relationship between nurses knowledge
and their demographic characteristics, which include age, sex, and years of experience in medical and surgical
wards.
Methodology: A quasi- experimental study was carried out at the medical and surgical wards in teaching
hospitals in Sulaimani governorate from the beginning of March up to June 2007٠
To reach the objectives of the study anon-probability (purposive) sample of (25) academic nurses who work in
the medical and surgical wards in teaching hospitals.
The data were collected through the use
Length of plasma generated by dc gas discharge under different vacuum pressures was studied experimentally. The cylindrical discharge tube of length 2m was evacuated under vacuum pressure range (0.1-0.5) mbar at constant external working dc voltage 1500V. It was found that the plasma length (L) increased exponentially with increasing of background vacuum air pressure. Empirical equation has been obtained between plasma length and gas pressure by using Logistic model of curve fitting. As vacuum pressure increases the plasma length increases due to collisions, ionizations, and diffusions of electrons and ions.
The research includes the preparation of two nano polymer ( , ) through a grafted nano ceramic material (aluminum oxide )(80 nm) by acrylic acid monomer. The latter was extended with two different ester monomers using free radical polymerization. The antibacterial activity of the prepared compounds) performed according to the agar diffusion method. All compounds (1, 2, 3, 4, NP1, NP2) showed inhibition against bacterial
This paper introduces an experimental study on the behavior of confined concrete filled aluminum tubular (CFT) column to improve strength design, ductility and durability of concrete composite structures under concentrically loaded in compression to failure. To achieve this: seven column specimens with same concrete diameter 100mm and without steel reinforcement have been examined through experimental testing, which are used to study the effects of the thickness of the aluminum tube encased concrete ( thickness : 0mm, 2mm, 3mm, 4mm and 5mm with same length of column 450mm), length of column (thickness 5mm and length of column 700mm) and durability (thickness 5mm and length of column 450mm) on the structural behavior of &
... Show MoreFriction stir welding (FSW) of Tee-joints is obtained by inserting a specially designed rotating pin into the clamped blanks, through top plate (skin) to bottom plate (stringer), and then moving it along the joint, limiting the contact between the tool shoulder and the skin. The present work aims to investigate the defects occur for Tee-joint of an Aluminum alloy (Al 5456) with dimensions (180mm x 70mm) for the skin plate, (180mm x 30mm) for stringer plate and thickness of (4mm).
The effects of welding parameters such as rotational speed, linear speed, plunging depth, tool tilting, and die radii of welding fixture on the welding quality of Aluminum Alloy will be studied. Weld defects had been summarized and studied, and then the best
Nd:YAG laser pulses of 9 nanosecond pulse duration and operating wavelength at 1.06 μm, were utilized to drill high thermal conductivity and high reflectivity aluminum and copper foils. The results showed a dependence of drilled holes characteristics on laser power density and the number of laser pulses used. Drilled depth of 74 ϻm was obtained in aluminum at 11.036×108 W/cm2 of laser power density. Due to its higher melting point, copper required higher laser power density and/or larger number of laser pulses to melt, and a maximum depth of 25 μm was reached at 13.46×108 W/cm2 using single laser pulse.
Slag of aluminum is a residue which results during the melting process of primary and secondary aluminum production. Salt slag of aluminum is hazardous solid waste according to the European Catalogue for Hazardous Wastes. Hence, recovery of aluminum not only saves the environment, but also has advantages of financial and economic returns. In this research, aluminum was recovered and purified from the industrial wastes generated as waste from both of State Company for Electrical and Electronic Industries (Baghdad/AlWaziriya) and General Company for Mechanical Industries (Babylon/-Al-Escandria). It was found that these wastes contain tiny proportions of other elements such as iron, copper, nickel, titanium, lead, and potassium. Wastes were
... Show MoreBackground: Bowel preparation prior to
colonic surgery usually includes antibiotic
therapy together with mechanical bowel
preparation which may cause discomfort to the
patients, prolonged hospitalization and water
& electrolyte imbalance.
Objective: to assess whether elective colon
and rectal surgery may be safely performed
without preoperative mechanical bowel
preparation.
Method: the study includes all patients who
had elective large bowel resection at Medical
City – Baghdad Teaching Hospital between
Feb, 2007 to Jan, 2010. Emergency operations
were not included. The patients were randomly
assigned to the 2 study groups (with or without
mechanical bowel preparation.
Results: A to
This paper investigated the fatigue life behavior of two composite materials subjected to different times of shot peening (2, 4 and 6 min).The first material prepared from unsaturated polyester with E-glass reinforcement by 33% volume fraction. While, the second one was prepared from unsaturated polyester with aluminum powder by2.5% volume fraction. The experimental results showed that the improvement in endurance limit was obtained (for the first material) at 2, 4 and 6 min shot peening times where the percentage of maximum improvement was 25% at shot peening time of 6 min. While, the endurance limit of the second material decreased at shot peening times of 2, 4 and 6 min where the percentage of maximum reduction was 29 % at shot peenin
... Show More