A tungsten inert gas (TIG) welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys. However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15) min. was used. All peened and unpeened, and welded and unwelded samples were characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring during welding process. Tensile test and Vickers micro-hardness measurements were performed for all samples to investigate the effect of shoot peening on mechanical properties of welded aluminum.
The results indicated a significant improvement in properties for peened welded and unwelded samples compared with those unpeened one. Also, the results showed that the tensile and microhardness properties were increased with increasing the time of exposure to 15 min. due to generation of compressive residual stresses at surface.
Five novel nickel, iron, cobalt, copper, and mercury complexes were synthesized from tetraazamacrocyclic Schiff base ligand (L), which were derived from 3-(4-(dimethyl amino) benzylidene) pentane-2,4-dione and 1,2- diaminocyclohexane in a 2:2 molar ratio. Many physico-chemical and spectroscopic techniques, including melting point, 1HNMR, 13CNMR, elemental analysis, molar conductance, magnetic susceptibility, UV-Vis, FT-IR, and thermogravimetric analysis (TGA), were used to characterize the Schiff base ligand and all metal complexes. The octahedral geometry of all the complexes [MLCl2] is confirmed by spectroscopic analyses. All substances' biological properties, such as their in vitro antioxidant activity or level of free radical scavenging
... Show MoreStick- slip is the continuous stopping& release of the Bit/BHA due to the irregular down-hole rotation prompted by the existing relationship between the friction torque and the torque applied from the surface to free the bit.
Friction coefficient between BHA and wellbore is the main player of stick slip amount, which can be mitigated by support a good lubricators as additives in drilling mud.
Mathematical (or empirical) solves should be done through adjusting all parameters which supposed to reduce stick- slip as low as possible using different models, one of the main parameters is drilling mud. As per Nanoparticles drilling fluid is a new technology that offers high performance
... Show MoreAbstract
The study of oxygen mass transfer was conducted in a laboratory scale 5 liter stirred bioreactor equipped with one Rushton turbine impeller. The effects of superficial gas velocity, impeller speed, power input and liquid viscosity on the oxygen mass transfer were considered. Air/ water and air/CMC systems were used as a liquid media for this study. The concentration of CMC was ranging from 0.5 to 3 w/v. The experimental results show that volumetric oxygen mass transfer coefficient increases with the increase in the superficial gas velocity and impeller speed and decreases with increasing liquid viscosity. The experimental results of kla were correlated with a mathematical correlation des
... Show MoreIn this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth
Introduction & Aim: Long-term diabetes mellitus (DM) is known to have a deleterious impact on bone health, resulting in change in bone mineral density, bone turnover, and bone quality, all of which increase the risk of fractures. The aim of. this study was to link immunological and pro-inflammatory cytokine (I.L-6, I.L-1, and TNF-alpha) markers in patients.with type 1 diabetes to Their connection to bones formation (sPINP) and bone resorption parameters (sCTX). Materials & Methods: This study included 80 patients suffering from T1DM in the age range of 20-45 years. The patients were assayed for their biochemical (Vitamin D and HbA1c), Immunological (IL-6, IL-1 and TNF-alpha) parameters, as well as bone formation and resor
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreThis systematic review aimed to analyse available evidence to answer two focused questions about the efficacy of erythritol powder air‐polishing (EPAP) (i) as an adjunctive during active periodontal therapy (APT) and (ii) as an alternative to hand/ultrasonic instrumentation during supportive periodontal therapy (SPT). Additionally, microbiological outcomes and patient's comfort/perceptions were assessed as secondary outcomes.
PubMed, Cochrane and Medline were searched for relevant articles published before February 2021 following PRISMA guidelines. The search was conducted by three indep
The main role of infill drilling is either adding incremental reserves to the already existing one by intersecting newly undrained (virgin) regions or accelerating the production from currently depleted areas. Accelerating reserves from increasing drainage in tight formations can be beneficial considering the time value of money and the cost of additional wells. However, the maximum benefit can be realized when infill wells produce mostly incremental recoveries (recoveries from virgin formations). Therefore, the prediction of incremental and accelerated recovery is crucial in field development planning as it helps in the optimization of infill wells with the assurance of long-term economic sustainabi