Preferred Language
Articles
/
joe-511
Direct Shear Behavior of Fiber Reinforced Concrete Elements
...Show More Authors

Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks.

This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC) and reactive powder concrete (RPC). The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressive strength, volume fraction of steel fiber, and shear reinforcement ratio on shear transfer capacity were considered in this study. Furthermore, failure modes, shear stress-slip behavior, and shear stress-crack width behavior were also presented in this study.

Tests’ results showed that volume fraction of steel fiber and compressive strength of concrete in NSC and RPC play a major role in improving the shear strength of concrete. As expectedly, due to dowel action, the shear reinforcement is the predominant factor in resisting the shear stress. The shear failure of NSC and RPC has the sudden mode of failure (brittle failure) with the approximately linear behavior of shear stress-slip relationship till failure. Using RPC instead of NSC with the same amount of steel fibers in constructing the push-off specimen result in high shear strength. In NSC, shear strength influenced by the three major factors; crack surface friction, aggregate interlock and steel fiber content if present. Whereas, RPC has only steel fiber and cracks surface friction influencing the shear strength. Due to cementitious nature of RPC in comparisons with NSC, the RPC specimen shows greater cracks width.

It is observed that the Mattock model gives very satisfactory predictions when applied to the present test results with a range of parametric variations; ranging from 0 % to 0.5 % in steel fibers content; from 0 % to 0.53 % in transverse reinforcement ratio; from 15 to 105 MPa in compressive strength of concrete. While it gives a poor prediction for a specimen with 1% steel fiber.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Numerical Prediction of Bond-Slip Behavior in Simple Pull-Out Concrete Specimens
...Show More Authors

In this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of t

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Tue Jan 09 2024
Journal Name
Fibers
Flexural Behavior of Pultruded GFRP–Concrete Composite Beams Strengthened with GFRP Stiffeners
...Show More Authors

The utilization and incorporation of glass fiber-reinforced plastics (GFRP) in structural applications and architectural constructions are progressively gaining prominence. Therefore, this paper experimentally and numerically investigates the use of GFRP I-beams in conjunction with concrete slabs to form composite beams. The experimental design incorporated 2600 mm long GFRP I-beams which were connected compositely to concrete slabs with a 500 mm width and 80 mm thickness. The concrete slabs are categorized into two groups: concrete slabs cast using normal-strength concrete (NSC), and concrete slabs prepared using high-strength concrete (HSC). Various parameters like the type of concrete (normal and high-strength concrete), type of

... Show More
View Publication
Scopus (12)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Advances In Civil Engineering
Behavior of Strengthened Composite Prestressed Concrete Girders under Static and Repeated Loading
...Show More Authors

The use of external posttensioning technique for strengthening reinforced concrete girders has been considerably studied by many researchers worldwide. However, no available data are seen regarding strengthening full-scale composite prestressed concrete girders with external posttensioned technique under static and repeated loading. In this research, four full-scale composite prestressed I-shape girders of 16 m span were fabricated and tested under static and repeated loading up to failure. Accordingly, two girders were externally strengthened with posttensioned strands, while the other two girders were left without strengthening. The experimental tests include deflection, cracking load, ultimate strength and strains at midspan, a

... Show More
View Publication
Scopus (14)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Journal Of Engineering Geology And Hydrogeology
Impact of Asphalt Stabilization on Deformation Behavior of Reinforced Soil Embankment Model under Cyclic Loading
...Show More Authors

Gypseous soil, which covers vast area in west, middle, east and south west regions of Iraq exhibit acceptable strength properties when dry, but it is weak and collapsible when it comes in touch with moisture from rain or other sources. When such weak soil is adopted for earth reinforced embankment construction, it may exhibit hazardous situation. Gypseous soil was investigated for the optimum liquid asphalt requirements of both cutback and emulsion using the one-dimensional unconfined compression strength test. The optimum fluid content was 13% (7% of cutback with 6% water content), and 17% (9% of emulsion with 8% water content). A laboratory model box of 50x50x25 cm was used as a representative of embankment; soil or asphalt stabilize

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Strengthening and Closing Cracks for Existing Reinforced Concrete Girders Using Externally Post-Tensioned Tendons
...Show More Authors

This research is devoted to study the strengthening technique for the existing reinforced concrete beams using external post-tensioning. An analytical methodology is proposed to predict the value of the effective prestress force for the external tendons required to close cracks in existing beams. The external prestressing force required to close cracks in existing members is only a part from the total strengthening force.
A computer program created by Oukaili (1997) and developed by Alhawwassi (2008) to evaluate curvature and deflection for reinforced concrete beams or internally prestressed concrete beams is modified to evaluate the deflection and the stress of the external tendons for the externally strengthened beams using Matlab

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
EFFECT OF STEEL FIBERS ADDITION ON THE BEHAVIOR OF HIGH STRENGTH CONCRETE CIRCULAR SHORT COLUMNS
...Show More Authors

loaded reinforced concrete circular short columns. An experimental investigation into the behavior
of 24 short reinforced concrete columns with and without steel fibers was carried out. The columns
had a circular section (200 mm diameter and 900 mm long). Test variables include concrete
strength, spacing of spiral reinforcement, and inclusion of steel fibers. The axial stress and axial
strains were obtained and used to evaluate the effects of the presence of steel fibers. It was found
that the addition of steel fibers slightly improves the load carrying capacity of the tested columns
whereas it significantly enhances the ductility of these specimens. Test results also indicated that for
the same confinement parameter

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 08 2018
Journal Name
International Journal Of Science And Research
effect of steel fiber type on compressive strength and modules of rupture on reactive powder concrete
...Show More Authors

Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Effect of posts inclination on the behavior of prestressed quadrilateral perforated concrete rafter
...Show More Authors

View Publication
Crossref
Publication Date
Mon Feb 02 2015
Journal Name
Journal Of Engineering, University Of Baghdad
'Impact Analysis of Reinforced Concrete Columns with Side Openings Subjected to Eccentric Axial Loads
...Show More Authors

View Publication
Publication Date
Fri Jan 01 2021
Journal Name
E3s Web Of Conferences
Behavioral Investigation of Reinforced Concrete T-Beams with Distributed Reinforcement in the Tension Flange
...Show More Authors

Current design codes and specifications allow for part of the bonded flexure tension reinforcement to be distributed over an effective flange width when the T-beams' flanges are in tension. This study presents an experimental and numerical investigation on the reinforced concrete flanged section's flexural behavior when reinforcement in the tension flange is laterally distributed. To achieve the goals of the study, numerical analysis using the finite element method was conducted on discretized flanged beam models validated via experimentally tested T-beam specimen. Parametric study was performed to investigate the effect of different parameters on the T-beams flexural behavior. The study revealed that a significant reduction in the

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref