Preferred Language
Articles
/
joe-506
A Nonlinear MIMO-PID Neural Controller Design for Vehicle Lateral Dynamics model based on Modified Elman Neural Network
...Show More Authors

This paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation results based Maltab package show the control methodology has effectiveness performance in terms of the excellent dynamic behavior of the vehicle model by minimizing the tracking error and smoothness control signals without saturation state obtained, especially when adding a bounded external disturbances to the vehicle model.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 19 2017
Journal Name
Arabian Journal For Science And Engineering
A New Method to Tune a Fractional-Order PID Controller for a Twin Rotor Aerodynamic System
...Show More Authors

View Publication
Scopus (33)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Fri Aug 27 2021
Journal Name
Human Interaction, Emerging Technologies And Future Systems V: Proceedings Of The 5th International Virtual Conference On Human Interaction And Emerging Technologies, Ihiet 2021, August 27-29, 2021 And The 6th Ihiet: Future Systems (ihiet-fs 2021), October 28-30, 2021, France
Electricity Consumption Forecasting in Iraq with Artificial Neural Network
...Show More Authors

Scopus (11)
Scopus
Publication Date
Tue Jan 17 2017
Journal Name
International Journal Of Science And Research (ijsr)
Detection System of Varicose Disease using Probabilistic Neural Network
...Show More Authors

Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Reduction of the error in the hardware neural network
...Show More Authors

Specialized hardware implementations of Artificial Neural Networks (ANNs) can offer faster execution than general-purpose microprocessors by taking advantage of reusable modules, parallel processes and specialized computational components. Modern high-density Field Programmable Gate Arrays (FPGAs) offer the required flexibility and fast design-to-implementation time with the possibility of exploiting highly parallel computations like those required by ANNs in hardware. The bounded width of the data in FPGA ANNs will add an additional error to the result of the output. This paper derives the equations of the additional error value that generate from bounded width of the data and proposed a method to reduce the effect of the error to give

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Comparison Study of Electromyography Using Wavelet and Neural Network
...Show More Authors

In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.

View Publication Preview PDF
Publication Date
Sun Jan 01 2012
Journal Name
Journal Of Engineering
DESIGN OF A VARIABLE GAIN NONLINEAR FUZZY CONTROLLER AND PERFORMANCE ENHANCEMENT DUE TO GAIN VARIATION
...Show More Authors

In this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.

Publication Date
Sat Apr 01 2023
Journal Name
Heliyon
A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique
...Show More Authors

View Publication Preview PDF
Scopus (44)
Crossref (36)
Scopus Clarivate Crossref
Publication Date
Fri Jan 17 2025
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
Optimal Hybrid Fuzzy PID for Pitch Angle Controller in Horizontal Axis Wind Turbines
...Show More Authors

Wind turbine (WT) is now a major renewable energy resource used in the modern world. One of the most significant technologies that use the wind speed (WS) to generate electric power is the horizontal-axis wind turbine. In order to enhance the output power over the rated WS, the blade pitch angle (BPA) is controlled and adjusted in WT. This paper proposes and compares three different controllers of BPA for a 500-kw WT. A PID controller (PIDC), a fuzzy logic controller (FLC) based on Mamdani and Sugeno fuzzy inference systems (FIS), and a hybrid fuzzy-PID controller (HFPIDC) have been applied and compared. Furthermore, Genetic Algorithm (GA) and Particle swarm optimization (PSO) have been applied and compared in order to identify the optimal

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat May 09 2015
Journal Name
International Journal Of Innovations In Scientific Engineering
USING ARTIFICIAL NEURAL NETWORK TECHNIQUE FOR THE ESTIMATION OF CD CONCENTRATION IN CONTAMINATED SOILS
...Show More Authors

The aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting

... Show More
View Publication
Publication Date
Sat Mar 01 2025
Journal Name
Iraqi Journal Of Physics
Design an Efficient Neural Network to Determine the Rate of Contamination in the Tigris River in Baghdad City
...Show More Authors

This article proposes a new technique for determining the rate of contamination. First, a generative adversarial neural network (ANN) parallel processing technique is constructed and trained using real and secret images. Then, after the model is stabilized, the real image is passed to the generator. Finally, the generator creates an image that is visually similar to the secret image, thus achieving the same effect as the secret image transmission. Experimental results show that this technique has a good effect on the security of secret information transmission and increases the capacity of information hiding. The metric signal of noise, a structural similarity index measure, was used to determine the success of colour image-hiding t

... Show More
View Publication
Crossref