The present work aimed to study the efficiency of nanofiltration (NF) and reverseosmosis (RO) process for water recovery from electroplating wastewater and study the factors affecting the performance of two membrane processes. Nanofiltration and reverse osmosismembranes are made from polyamide as spiral wound module. The inorganic materials ZnCl 2 CuCl2 .2H2O, NiCl.2.6H2O and CrCl3.6H2O were used as feed solutions. The operating parametersstudied were: operating time, feed concentrations for heavy metal ions, operating pressure, feed flow rate, feed temperature and feed pH. The experimental results showed, the permeateconcentration increased and water flux decreased with increase in time from 0 to 70 min. Thepermeate concentrations increased and flux decreased with increase in feed concentrations from 10 to 300 mg/l. Raising of pressure from 1 to 4 bar, permeate concentration decreased for ROfor NF decreased and then increased at high pressure and increase the flux. The rises of flow ratefrom 20 to 50 l/h decreased permeate concentration and the flux increase. The rises oftemperature from 26 to 40 °C, increased permeate concentration and increased the flux. The risein pH from 4 to 7, decreased the flux as the pH goes from acidic side towards alkaline. Thepolyamide nanofiltration membrane had allowed permeation of chromium and copper ions tolower than permissible limits. Nanofiltration membrane had allowed permeation of nickel andzinc ions at low concentration of these ions. The polyamide RO membrane gave a highefficiency for removal of chromium, copper, nickel and zinc and it had allowed permeation ofthese ions to the lower than permissible limits. The rejection at first three minutes when the feed concentration approximately was constant for chromium in NF and RO, was 99.7% and 99.93%for copper was 98.43% and 99.33%, for zinc was 97.96% and 99.49%, and for nickel was97.18% and 99.49% respectively. The maximum recovery for chromium in NF and RO was
71.75% and 48.5%, for copper was 75.62% and 50.68%, for zinc was 80.87% and 54.56%, fornickel was 60.06% and 46.18% respectively. For a mixture of synthetic electroplating wastewater, nanofiltration and reverse osmosis membranes have a high rejection percentage for heavy metal ions. It was obtained pure water and concentrations of less than allowable limits forheavy metals in the case of the mixture.
The research is concerned with studying the characteristics of Sustainable Architecture and Green Architecture, as a general research methodology related to the specific field of architecture, based on the differentiation between two generic concepts, Sustainability and Greening, to form the framework of the research specific methodology, where both concepts seem to be extremely overlapping for research centers, individuals, and relevant organizations. In this regard, the research tend towards searching their characteristics and to clearly differentiates between the two terms, particularly in architecture, where the research seeks understanding sustainable and green architectures, how they are so close or so far, and the
... Show MoreThis research is a new reading of some of the words in the Holy Quran, which is very old. It is a human reading in which religions are intertwined by recognizing the relationship between man and his fellow man in the unity of existence and the unity of the source of religions and the unity of language. The importance of this research in comparing some of the Arabic words has been contained among books believed by followers that it is from the one God Sunday.
When words are spoken in one way in the form of one creature, from the beginning of creation to the present day, this indicates the single origin of the languages..
The research tools were books of heavenly religions, the Quran, dictionaries and interpretations.
... Show MorePolyacrylonitrile nanofiber (PANFS), a well-known polymers, has been extensively employed in the manufacturing of carbon nanofibers (CNFS), which have recently gained substantial attention due to their excellent features, such as spinnability, environmental friendliness, and commercial feasibility. Because of their high carbon yield and versatility in tailoring the final CNFS structure, In addition to the simple formation of ladder structures through nitrile polymerization to yield stable products, CNFS and PAN have been the focus of extensive research as potential production precursors. For instance, the development of biomedical and high-performance composites has now become achievable. PAN homopolymer or PAN-based precursor copolymer can
... Show MoreAn antibacterial and antifungal piperonal-derived compound and its Rh(III), Pd(II), Pt(IV), and Cd(II) metal complexes were synthesized and characterized by spectroscopic methods, conductivity, metal analyses and magnetic moment measurements. The nature of the complexes formed in ethanolic solution was studied following the molar ratio method. From the spectral studies, octahedral geometry was suggested for rhodium (III) and platinum (IV) complexes, while a square planer structure was suggested for palladium (II) complex and a tetrahedral geometry for cadmium (II) complex. Structural geometries of these compounds were also suggested in gas phase by using hyperchem-8 program for the molecular mechanics and semi-empirical calculations.
... Show MoreThis research presents a study for precipitating phosphorus (as phosphate ion) from simulated wastewater (5ppm initial concentration of phosphorus) using calcium hydroxide Ca(OH)2 solution. The removal of phosphorus by Ca (OH)2 solution is expected to be very effective since the chemical reaction is of acid-base type but Ca(OH)2 forms complex compound with phosphate ions called. Hydroxyapatite Ca5 (PO4)3OH. hydroxyapatite is slightly soluble in water. This research was directed towards sustainable elements as phosphorus. Kinetics of the dissolution reaction of hydroxyapatite was investigated to find the best factors to recover phosphorus. The effect of con
... Show MoreSolid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on
In this paper flotation method experiments were performed to investigate the removal of lead and zinc. Various parameters such as pH, air flow rate, collector concentrations, collector type and initial metal concentrations were tested in a bubble column of 6 cm inside diameter. High recoveries of the two metals have been obtained by applying the foam flotation process, and at relatively short time 45 minutes . The results show that the best removal of lead about 95% was achieved at pH value of 8 and the best removal of zinc about 93% was achieved
at pH value of 10 by using 100 mg/l of Sodium dodecylsulfate (SDS) as a collector and 1% ethanol as a frother. The results show that the removal efficiency increased with increasing initial m
The objective of this study is to determination the content of some heavy metals (lead, cadmium, chromium) in colored tattoo stickers. twelve kinds of colored tattoo stikcers were collected from Baghdad markets, it was estimated heavy metals using atomic absorption spectrophotometer (Shimadzu A5000). The results indicated the concentrations of lead in all samples (1.61_1.00 mg / kg) and chromium in the three samples (0.85_0.97 mg / kg) while other samples are free of chromium , and cadmium. These elements are the components of printing inks and dyes in tattoo stickers, and this does not conform to the health and safety conditions for the packaging of food according to the organizations of the health and safety of
... Show More