Preferred Language
Articles
/
joe-467
Desulfurization of Diesel Fuel by Oxidation and Solvent Extraction
...Show More Authors

This research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT) was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN) and N-methyl – 2 - pyrrolidone (NMP) as  extractants . Also the effect of five parameters (stirring speed :150 , 250 , 350 , and 450) rpm, temperature (30 , 40 , 45 , and 50) oC, oxidant/simulated diesel fuel ratio (0.5 , 0.75 , 1 , and 1.5) , catalyst/oxidant ratio(0.125,0.25,0.5,and0.75) , and solvent/simulated diesel fuel ratio(0.5,0.6,0.75,and1) were examined as well as solvent type. The results exhibit that the highest removal of sulfur is 98.5% using NMP solvent while it is 95.8% for ACN solvent. The set of conditions that show the highest sulfur removal is: stirring speed of 350 rpm , temperature 50oC , oxidant/simulated diesel fuel ratio 1 , catalyst/oxidant ratio 0.5 , solvent/simulated diesel fuel ratio 1. These best conditions were applied upon real diesel fuel (produced from Al-Dora refinery)with 1000 ppm sulfur content . It was found that sulfur removal was 64.4% using ACN solvent and 75% using NMP solvent.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
With Solvent Extraction Method, and via new Organic Reagent 2-(Benzo thiazolyl azo)-4,5- Diphenyl Imidazole for Spectrophotometric Determination of Copper (II) in different Samples
...Show More Authors

The new organic reagent 2-[Benzo thiazolyl azo]-4,5-diphenyl imidazole was prepared and used as complexing agent for separation and spectrophotometric determination of Cu2+ ion in some samples include plants, soil, water and human blood serum. Initially determined all factors effect on extraction method and the results show optimum pH was (pHex=9), optimum concentration was 40?g/5mLCu2+ and optimum shaking time was (15min.), as well stoichiometry study appears the complex structure was 1:1 Cu2+: BTADPI. Interferences effect of cations were studied. Synergism effect shows MIBK gave increasing in distribution ratio (D). Organic solvent effect appears there is no any linear relation between dielectric constant for organic solvent used and dis

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Preparation of Light Fuel Fractions from Heavy Vacuum Gas Oil by Thermal Cracking Reaction
...Show More Authors

This work deals with thermal cracking of heavy vacuum gas oil which produced from the top of vacuum distillation unit at Al- DURA refinery, by continuous process. An experimental laboratory plant scale was constructed in laboratories of chemical engineering department, Al-Nahrain University and Baghdad University. The thermal cracking process was carried out at temperature ranges between 460-560oC and atmospheric pressure with liquid hourly space velocity (LHSV) equal to 15hr-1.The liquid product from thermal cracking unit was distilled by atmospheric distillation device according to ASTM D-86 in order to achieve two fractions, below 220oC as a gasoline fraction and above 220oC as light cycle o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Decolorization of Reactive Yellow Dye by Advanced Oxidation Using Continuous Reactors
...Show More Authors

The reactive yellow azo dye (λmax = 420 nm) is widely utilized for textile coloring due to its low-cost stability and tolerance properties. Treatment of dye-containing wastewater by traditional methods is usually inadequate because of its resistance to biological and chemical degradation. From this research, the continuous reactor of an advanced oxidation method supported the use of H2O2/TiO2/UV to remove the coloration of the reactive yellow dye from the discharge. At constant best conditions obtained from the batch reactor tests pH=7, H2O2 dosage = 400 mg/l and TiO2=25mg/l , the aqueous solutions were tested in the continuous reactor at different dye concentration and d

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Study the Optimization of Petroleum Refinery Wastewater Treatment by Successive Electrocoagulation and Electro-oxidation Systems
...Show More Authors

In this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current density (C

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Study the Optimization of Petroleum Refinery Wastewater Treatment by Successive Electrocoagulation and Electro-oxidation Systems
...Show More Authors

In this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current densi

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Asian Journal Of Ournal Of Chemistry
Extraction of Ocimum basillicum Oil by Solvents Methods
...Show More Authors

The extraction of Basil oil from Iraqi Ocimum basillicum leaves using n-hexane and petroleum ether as organic solvents were studied and compared. The concentration of oil has been determined in a variety of extraction temperatures and agitation speed. The solvent to solid ratio effect has been studied in order to evaluate the concentration of Ocimum basillicum oil. The optimum experimental conditions for the oil extraction were established as follows: n-hexane as organic solvent, 60 °C extraction temperature, 300 rpm agitation speed and 40:1mL:g amount of solvent to solid ratio.

View Publication
Scopus (9)
Crossref (7)
Scopus Crossref
Publication Date
Wed Aug 15 2018
Journal Name
Al-khwarizmi Engineering Journal
Bioremediation of Soil Contaminated with Diesel using Biopile system
...Show More Authors

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil:

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Mar 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Desulfurization of gas oil using a solar photocatalytic microreactor
...Show More Authors

The present work is devoted to investigate the performance of a homemade Y-shape catalytic microreactor for degradation of dibenzothiophene (DBT), as a model of sulphur compounds including in gas oil, utilizing solar incident energy. The microchannel was coated with TiO2 nanoparticles which were used as a photocatalyst. Performance of the microreactor was investigated using different conditions (e.g., DBT concentration, LHSV, operating temperature, and (H2O2/DBT) ratio). Our experiments show that, in the absence of UV light, no reaction takes place. The results revealed that outlet concentration of DBT decreases as the mean residence time in the microreactor increases. Also, it was noted that operating temperature s

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
Treatment of Wastewater Contaminated with Pesticide (Alachlor) by Solar Enhanced Advanced Oxidation Processes
...Show More Authors

The degradation performance of aqueous solution of pesticide Alachlor has been studied at solar pilot scale plant in two photocatalytic systems: homogeneous photocatalysis by photo-Fenton and heterogeneous photocatalysis with titanium dioxide. The pilot scale system included of compound parabolic collectors specially designed for solar photocatalytic applications, and installed at University of Baghdad, Department of Environmental Engineering back yard. The influence of different concentrations, H2O2 (200-2400 mg/l), Fe+2(5- 30 mg/l) and TiO2 (100-500 mg/l) and their relationship with the degradation efficiency were studied.

      The COD removal efficienc

... Show More
View Publication Preview PDF
Publication Date
Sat Mar 30 2024
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Caffeine Extraction from Spent Coffee Grounds by Solid-liquid and Ultrasound-assisted Extraction: Kinetic and Thermodynamic Study
...Show More Authors

Coffee is the most essential drink today, aside from water, the high consumption of coffee and the byproducts of its soluble industries such as spent coffee grounds can have a negative effect on the environment as a source of toxic organic compounds. Therefore, caffeine removal from the spent coffee ground can be applied as a method to limit the effect of its production on the environment. The aim of this study is to determine the kinetics and thermodynamics parameters and develop models for both processes based on the process parameters by using traditional solid-liquid extraction and Ultrasound-assisted extraction methods. The processes were performed at a temperature range of 25 to 55 °C for traditional and ultrasound baths, and

... Show More
View Publication
Crossref