Preferred Language
Articles
/
joe-462
Impact Analysis of Reinforced Concrete Columns with Side Openings Subjected to Eccentric Axial Loads
...Show More Authors

In this research the behavior of reinforced concrete columns with large side openings under impact loads was studied. The overall cross sectional dimensions of the column specimens used in this research were (500*1400) mm with total height of (14000) mm. The dimensions of side openings were (600*2000) mm. The column was reinforced with (20) mm diameter in longitudinal direction, while (12) mm ties were used in the transverse direction. The effect of eccentric impact loads on the horizontal and vertical displacement for this column was studied.                                                                                                                             

Nonlinear finite element analysis has been carried out using ready computer finite element package (ANSYS) to simulate the behavior of the reinforced concrete column with large side openings. Two load cases were considered in this investigation (C1, C2) with three different load values for each case. In the first case (C1) the loads was applied to one side of the column and in the second case (C2) the loads was applied to both sides. An Equilateral triangular load-time function was used for simulation the impact load results from gantry cranes supported by the column with total time duration (0.1 sec).

In order to verify the analysis method, as no experimental data exist for comparing the obtained results, another analysis is made for tested conventional column under impact load at mid-height and good agreement has been obtained.

For the above mentioned column, the maximum displacements were (33.3, 22.2) mm in the horizontal and longitudinal direction respectively, location of the maximum horizontal displacement was at the crown of the column. By comparing the results of the first loading case with the second one it is shown that in the horizontal direction, maximum displacement increases by (139%), (208%), and (147%) respectively, also the maximum vertical displacement increases by (150%), (172%), and (172%) respectively.             

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 01 2025
Journal Name
Civil Engineering Journal
On the Impact of Lacing Reinforcement Arrangement on Reinforced Concrete Deep Beams Performance
...Show More Authors

The optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Structural Durability & Health Monitoring
Seismic Analysis of Reinforced Concrete Silos under Far-Field and Near-Fault Earthquakes
...Show More Authors

View Publication
Scopus (2)
Crossref (3)
Scopus Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Verification and Parametric Analysis of Shear Behavior of Reinforced Concrete Beams using Non-linear Finite Element Analysis
...Show More Authors

Many researchers have tackled the shear behavior of Reinforced Concrete (RC) beams by using different kinds of strengthening in the shear regions and steel fibers. In the current paper, the effect of multiple parameters, such as using one percentage of Steel Fibers (SF) with and without stirrups, without stirrups and steel fibers, on the shear behavior of RC beams, has been studied and compared by using Finite Element analysis (FE). Three-dimensional (3D) models of (RC) beams are developed and analyzed using ABAQUS commercial software. The models were validated by comparing their results with the experimental test. The total number of beams that were modeled for validation purposes was four. Extensive pa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 01 2015
Journal Name
Applied Research Journal
Experimental Study of the Behavior of Composite Concrete Castellated Steel Beams Subjected to Pure Bending
...Show More Authors

The aim of this study is to investigate the behavior of composite castellated beam in which the concrete slab and steel beam connected together with headed studs shear connectors. Four simply supported composite beams with various degree of castellation were tested under two point static loads. One of these beams was built up using standard steel beam, i.e. without web openings, to be a reference beam. The other three beams were fabricated from the same steel I-section with various three castellation ratios, (25, 35, and 45) %. In all beams the concrete slab has the same section and properties. Deflection at mid span of all beams was measured at each 10 kN load increment. The test results show that the castellation process leads to

... Show More
Publication Date
Sun Apr 01 2007
Journal Name
Journal Of Engineering
CURVATURE DUCTILITYOF REINFORCED CONCRETE BEAMSECTIONS STIFFENED WITH STEEL PLATES
...Show More Authors

Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Experimental and Numerical Study on CFRP-Confined Square Concrete Compression Members Subjected to Compressive Loading
...Show More Authors

    

Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.

The aim of this research is to study experime

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Retrofitting Reinforced Concrete One–Way Damaged Slabs Exposed to High Temperature
...Show More Authors

Exposure of reinforced concrete buildings to an accidental fire may result in cracking and loss in the bearing capacity of their major components, columns, beams, and slabs. It is a challenge for structural engineers to develop efficient retrofitting techniques that enable RC slabs to restore their structural integrity, after being exposed to intense fires for a long period of time. Experimental
investigation was carried out on twenty one slab specimens made of self compacting concrete, eighteen of them are retrofitted with CFRP sheets after burning and loading till failure while three of them (which represent control specimens) are retrofitted with CFRP sheet after loading till failure without burning. All slabs had been tested in a

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
An Analysis of Stress Distribution in a Spline Shaft Subjected to Cycilc Impulsive Load
...Show More Authors

In this paper the effect of engagement length, number of teeth, amount of applied load, wave propagation time, number of cycles, and initial crack length on the principal stress distribution, velocity of crack propagation, and cyclic crack growth rate in a spline coupling subjected to cyclic torsional impact have been investigated analytically and experimentally. It was found that the stresses induced due to cyclic impact loading are higher than the stresses induced due to impact loading with high percentage depends on the number of cycles and total loading time. Also increasing the engagement length and the number of teeth reduces the principal stresses (40%) and
(25%) respectively for increasing the engagement length from (0.15 to 0

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Numerical Analysis of Under-Reamed Pile Subjected to Dynamic Loading in Sandy Soil
...Show More Authors
Abstract<p>Under-reamed piles are piles with enlarged bases, which may be single bulb or multi bulbs. Such piles are suitable for resisting considerable soil movement of filed up ground, soft clay, and loose sand and have the advantages of increasing the soil strength and decreasing the displacement. In the present study, the finite element method was used to analyse the performance of a single pile with under-reamed bulbs of different shapes, that is, single cone, double cone, and half and full sphere, embedded in homogeneous, poorly graded sandy soil. The model of under-reamed pile was made of reinforced concrete and the bulb located at the middle of the embedded length of the pile. The dynami</p> ... Show More
View Publication Preview PDF
Scopus (22)
Crossref (18)
Scopus Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
EFFECT OF STEEL FIBERS ADDITION ON THE BEHAVIOR OF HIGH STRENGTH CONCRETE CIRCULAR SHORT COLUMNS
...Show More Authors

loaded reinforced concrete circular short columns. An experimental investigation into the behavior
of 24 short reinforced concrete columns with and without steel fibers was carried out. The columns
had a circular section (200 mm diameter and 900 mm long). Test variables include concrete
strength, spacing of spiral reinforcement, and inclusion of steel fibers. The axial stress and axial
strains were obtained and used to evaluate the effects of the presence of steel fibers. It was found
that the addition of steel fibers slightly improves the load carrying capacity of the tested columns
whereas it significantly enhances the ductility of these specimens. Test results also indicated that for
the same confinement parameter

... Show More
View Publication Preview PDF
Crossref (1)
Crossref