Preferred Language
Articles
/
joe-455
Multi-Sites Multi-Variables Forecasting Model for Hydrological Data using Genetic Algorithm Modeling
...Show More Authors

A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was checked by comparing it's results with the results of six forecasting models developed for the same data by Al-Suhili and khanbilvardi, 2014.The check of the performance of the new developed model was made for three forecasted series for each variable, using the Akaike test which indicates that the developed model is more successful, since it gave the minimum (AIC) values for (91.67 %) of the forecasted series. This indicates that the developed model had improved the forecasting performance. For the rest of cases (8.33%), other models gave the lowest AIC value, however it is slightly lower than that given by the developed model. Moreover the t-test for monthly means comparison between the models indicates that the developed model has the highest percent of succeed (100%).

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 13 2019
Journal Name
Al-khwarizmi Engineering Journal
Transient Behavior Analysis for Solar Energy Storage in PCM-CFM Material Using Equivalent Heat Capacity Method as Storage Model
...Show More Authors

A paraffin wax and copper foam matrix were used as a thermal energy storage material in the double passes air solar chimney (SC) collector to get ventilation effect through daytime and after sunset. Air SC collector was installed in the south wall of an insulated test room and tested with different working angles (30o, 45o and 60o). Different SC types were used; single pass, double passes flat plate collector and double pass thermal energy storage box collector (TESB). A computational model based on the finite volume method for transient tw dimensional domains was carried out to describe the heat transfer and storage in the thermal energy storage material of collector. Also, equivalent specific heat metho

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Australian Journal Of Mathematical Analysis And Applications
Formulation of approximate mathematical model for incoming water to some dams on Tigris and Euphrates Rivers using spline function
...Show More Authors

n this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.

View Publication
Scopus
Publication Date
Sun Jul 02 2017
Journal Name
Journal Of Educational And Psychological Researches
Teaching Using Adey- Shire Model and its Effect in Achievement and Critical Thinking for first intermediate students in Mathematics
...Show More Authors

The aim of this research is to measure the effect of Adey- Shire model in the achievement and critical thinking of first intermediate female students in mathematics. The researcher adopted the experimental method with a post-test, the research of sample consists of (60) female students, divided into two groups with (30) students in the experimental group, that studied with Adey- Shire model, and (30) students in the control group who studied in the usual way. The two groups are equivalent in many variables. The researcher makes two tests of multiple choices, the first one is an achievement test consists (30) items and another test was for a critical thinking test with (25) items. The statistical analysis make to both tests is made with s

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 24 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
A Comparative Study for the Accuracy of Three Molecular Docking Programs Using HIV-1 Protease Inhibitors as a Model
...Show More Authors

Flexible molecular docking is a computational method of structure-based drug design to evaluate binding interactions between receptor and ligand and identify the ligand conformation within the receptor pocket. Currently, various molecular docking programs are extensively applied; therefore, realizing accuracy and performance of the various docking programs could have a significant value. In this comparative study, the performance and accuracy of three widely used non-commercial docking software (AutoDock Vina, 1-Click Docking, and UCSF DOCK) was evaluated through investigations of the predicted binding affinity and binding conformation of the same set of small molecules (HIV-1 protease inhibitors) and a protein target HIV-1 protease enzy

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Applied Sciences
Multiobjective Optimization of Stereolithography for Dental Bridge Based on a Simple Shape Model Using Taguchi and Response Surface Methods
...Show More Authors

Stereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
A Modified 2D-Checksum Error Detecting Method for Data Transmission in Noisy Media
...Show More Authors

In data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Stability testing of time series data for CT Large industrial establishments in Iraq
...Show More Authors

Abstract: -
The concept of joint integration of important concepts in macroeconomic application, the idea of ​​cointegration is due to the Granger (1981), and he explained it in detail in Granger and Engle in Econometrica (1987). The introduction of the joint analysis of integration in econometrics in the mid-eighties of the last century, is one of the most important developments in the experimental method for modeling, and the advantage is simply the account and use it only needs to familiarize them selves with ordinary least squares.

Cointegration seen relations equilibrium time series in the long run, even if it contained all the sequences on t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Aug 15 2023
Journal Name
Journal Of Economics And Administrative Sciences
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad
...Show More Authors

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Intelligent Systems
Void-hole aware and reliable data forwarding strategy for underwater wireless sensor networks
...Show More Authors
Abstract<p>Reliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co</p> ... Show More
View Publication Preview PDF
Scopus (8)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.