Preferred Language
Articles
/
joe-455
Multi-Sites Multi-Variables Forecasting Model for Hydrological Data using Genetic Algorithm Modeling
...Show More Authors

A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was checked by comparing it's results with the results of six forecasting models developed for the same data by Al-Suhili and khanbilvardi, 2014.The check of the performance of the new developed model was made for three forecasted series for each variable, using the Akaike test which indicates that the developed model is more successful, since it gave the minimum (AIC) values for (91.67 %) of the forecasted series. This indicates that the developed model had improved the forecasting performance. For the rest of cases (8.33%), other models gave the lowest AIC value, however it is slightly lower than that given by the developed model. Moreover the t-test for monthly means comparison between the models indicates that the developed model has the highest percent of succeed (100%).

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Forecasting the use of Generalized Autoregressive Conditional Heteroscedastic Models (GARCH) Seasonality with practical application
...Show More Authors

In this paper  has been one study of autoregressive generalized conditional heteroscedasticity models existence of the seasonal component, for the purpose applied to the daily financial data at high frequency is characterized by Heteroscedasticity seasonal conditional, it has been depending on Multiplicative seasonal Generalized Autoregressive Conditional Heteroscedastic Models Which is symbolized by the Acronym (SGARCH) , which has proven effective expression of seasonal phenomenon as opposed to the usual GARCH models. The summarizing of the research work studying the daily data for the price of the dinar exchange rate against the dollar, has been used autocorrelation function to detect seasonal first, then was diagnosed wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Methods of Forecasting Credit Losses in A Sample of Iraqi Banks - A Comparative Analysis
...Show More Authors

  The general trend in Iraqi banks is focused towards the application of international financial reporting standards, especially the international financial reporting standard IFRS 9 “Financial Instruments”, in addition to the directives issued on the Central Bank of Iraq’s instructions for the year 2018 regarding the development of expected credit losses models, and not to adhere to a specific method for calculating these losses and authorizing the banks’ departments to adopt the method of calculating losses that suits the nature of the bank’s activity and to be consistent in its use from time to time. The research problem revolves around the different methodologies for calculatin

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Iraqi Journal Of Physics
Statistical Analysis and Forecasting of Rainfall Patterns and Trends in Gombe North-Eastern Nigeria
...Show More Authors

Rainfall in Nigeria is highly dynamic and variable on a temporal and spatial scale. This has taken a more pronounced dimension due to climate change. In this study, Standard Precipitation Index (SPI) and Mann-Kendall test statistical tools were employed to analyze rainfall trends and patterns in Gombe metropolis between 1990 and 2020 and the ARIMA model was used for making the forecast for ten (10) years. Daily rainfall data of 31 years obtained from Nigerian Meteorological Agency, (NIMET) was used for the study. The daily rainfall data was subjected to several analyses. Standard precipitation index showed that alternation of wet and dry period conditions had been witnessed in the study area. The result obtained showed that there is an u

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Mar 01 2016
Journal Name
International Journal Of Engineering Research And Advanced Technology (ijerat)
Speeding Up Back-Propagation Learning (SUBPL) Algorithm: A New Modified Back_Propagation Algorithm
...Show More Authors

The convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.

View Publication
Publication Date
Mon Jun 30 2025
Journal Name
Medical Journal Of Babylon
Assessment of Six Polymorphic Variants as Genetic Risks for Coronary Artery Disease: A Case–Control Study
...Show More Authors
Abstract<sec> <title>Background:

Coronary artery disease (CAD) is the leading cause of death worldwide. Certain genetic polymorphisms play an important role in this multifactorial disease, being linked with increased risk of early onset CAD.

Objective:

To assess six genetic polymorphisms and clinical risk factors in relation to early onset nondiabetic Iraqi Arab CAD patients compared to controls.

Materials and Methods:

This case–contro

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Mar 30 2003
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Mathematical Model for Multicomponent Distillation Column
...Show More Authors

View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Proposition of New Ensemble Data-Intelligence Models for Surface Water Quality Prediction
...Show More Authors

View Publication
Scopus (87)
Crossref (84)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
Data Base for Dynamic Soil Properties of Seismic Active Zones in Iraq
...Show More Authors

Iraq is located near the northern tip of the Arabian plate, which is advancing northwards relative to the Eurasian plate, and is predictably, a tectonically active country. Seismic activity in Iraq increased significantly during the last decade. So structural and geotechnical engineers have been giving increasing attention to the design of buildings for earthquake resistance. Dynamic properties play a vital role in the design of structures subjected to seismic load. The main objective of this study is to prepare a data base for the dynamic properties of different soils in seismic active zones in Iraq using the results of cross hole and down hole tests. From the data base collected it has been observed that the average ve

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 21 2022
Journal Name
Iraqi Journal For Computer Science And Mathematics
Fuzzy C means Based Evaluation Algorithms For Cancer Gene Expression Data Clustering
...Show More Authors

The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Aug 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c

... Show More
View Publication
Scopus (9)
Crossref (8)
Scopus Crossref