Preferred Language
Articles
/
joe-452
Experimental Study of Interior Temperature Distribution Inside Parked Automobile Cabin
...Show More Authors

Temperature inside the vehicle cabin is very important to provide comfortable conditions to the car passengers. Temperature inside the cabin will be increased, when the car is left or parked directly under the sunlight. Experimental studies were performed in Baghdad, Iraq (33.3 oN, 44.4 oE) to investigate the effects of solar radiation on car cabin components (dashboard, steering wheel, seat, and inside air). The test vehicle was oriented to face south to ensure maximum (thermal) sun load on the front windscreen. Six different parking conditions were investigated. A suggested car cover was examined experimentally. The measurements were recorded for clear sky summer days started at 8 A.M. till 5 P.M. Results show that interior air temperature in unshaded parked car reaches 70oC and dashboard temperature can approach 100 oC. While, cardboard car shade inside the car not reduce the air temperature inside it. Suggested car cover with 1 cm part-down side windows reduced temperature of cabin components by 70 % in average compare to the base case.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Studying the Rheological Properties of Non-Newtonian Fluids under the Effect of temperature Using Different Chemical Additives
...Show More Authors

   This research studies the rheological properties ( plastic viscosity, yield point and apparent viscosity) of Non-Newtonian fluids under the effect of temperature using different chemical additives, such as (xanthan gum (xc-polymer), carboxyl methyl cellulose ( High and low viscosity ) ,polyacrylamide, polyvinyl alcohol, starch, Quebracho and Chrome Lignosulfonate). The samples were prepared by mixing 22.5g of bentonite with 350 ml of water and adding the additives in four different concentrations (3, 6, 9, 13) g by using Hamilton Beach mixer. The rheological properties of prepared samples were measured by using Fan viscometer model 8-speeds. All the samples were subjected to Bingham plastic model. The temperature range studi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 31 2000
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Influence of Temperature on Corrosion Inhibition of Carbon Steel in Air-Saturated 7NH3PO4 by Potassium Iodide
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Sep 01 2015
Journal Name
Iraqi Journal Of Science
Determination of Optimal Temperature and pH for Radial Growth of Some Dermatophyte Species Isolated from Leukemia Patients
...Show More Authors

The study is concern on determine the effect of different temperatures (25, 28, 30 and 370C), and different pH values (4.5, 5.5, 6 and 8) on the radial growth (mm) of 15 dermatophyte isolates (Microsporum canis 7, Trichophyton rubrum 5, Trichophyton mentagropyhtes 3). The specimens for the current study were collected from nail infections in patients with different type of leukemia whom admitted at Baghdad Educational Hospital, 7th floor. The result revels that the optimum temperature for radial growth was 300C then 280C for all isolates, while the optimum pH for all isolates was 6.

Publication Date
Tue Feb 18 2020
Journal Name
Modelling And Simulation In Engineering
Temperature and Stress Evaluation during Three Different Phases of Friction Stir Welding of AA 7075-T651 Alloy
...Show More Authors

The current study performs an explicit nonlinear finite element simulation to predict temperature distribution and consequent stresses during the friction stir welding (FSW) of AA 7075-T651 alloy. The ABAQUS® finite element software was used to model and analyze the process steps that involve plunging, dwelling, and traverse stages. Techniques such as Arbitrary Lagrangian–Eulerian (ALE) formulation, adaptive meshing, and computational feature of mass scaling were utilized to simulate sequence events during the friction stir welding process. The contact between the welding tool and workpiece was modelled through applying Coulomb’s friction model with a nonlinear friction coefficient value. Also, the model considered the effect of nonlin

... Show More
View Publication Preview PDF
Scopus (43)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2011
Journal Name
Thin Solid Films
Effect of temperature and deposition time on the optical properties of chemically deposited nanostructure PbS thin films
...Show More Authors

View Publication
Scopus (56)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Fri Mar 30 2018
Journal Name
Journal Of Pure And Applied Microbiology
The Effect of Polyester Fibers Addition on Some Mechanical Properties of Room Temperature Vulcanized Maxillofacial Silicon Elastomers
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Taibah University Medical Sciences
Impact of nano-cellulose fiber addition on physico-mechanical properties of room temperature vulcanized maxillofacial silicone material
...Show More Authors

Objectives: Maxillofacial silicone is used to restore abnormalities due to congenital or acquired causes. However, the quality of silicone is far from ideal. This study was aimed at assessing the influence of the addition of cellulose nanofibers (CNFs; several nanometers wide and 2-5 micro m long) on the physical and mechanical characteristics of maxillofacial silicone elastomers. Methods: Two CNF weight percentages (0.5% and 1%) were tested, and 180 specimens were divided into one control and two experimental groups. Each group was subdivided into six subgroups. In each subgroup, ten specimens subjected to each of the following tests: tearing strength, Shore-A hardness, tensile strength, elongation percentage, surface roughness, and color

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Heat Transfer
Theoretical and experimental investigation of a heat pipe heat exchanger for energy recovery of exhaust air
...Show More Authors

Heat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe he

... Show More
Scopus (15)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
Experimental Investigation of Vibration Stress Relief of A106 Steel Pipe T-Welded Fittings
...Show More Authors

This research examines the use of vibratory treatments to reduce residual stresses in small welded parts. In this experimental investigation, a post weld vibration treatment was applied to T- A106 steel pipe fitting specimens to study the effect of the treatment on the residual stress and the hardness of the material. The vibratory stress relief treatment was carried out at different vibration frequency. The results have demonstrated that post-weld vibratory stress relief of small size fittings is possible and residual stress may be relieved, and the treatment may be an alternative method for heat treatment especially when unchange in dimensions and material stability are required.

 

View Publication Preview PDF
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Engineering
Experimental Evaluation of Stability and Rheological Properties of Foam Cement for Oil Wells
...Show More Authors

Oilwell cementing operations are crucial for drilling and completion, preserving the well's productive life. However, weak and permeable formations pose a high risk of cement slurry loss, leading to failure. Lightweight cement, like foamed cement, is used to avoid these difficulties. This study is focused on creating a range of foamed slurry densities and examining the effect of gas concentration on their rheological properties. The foaming agent and foam stabilizer are tested, and the optimal concentration is determined to be 2% and 0.12%, respectively, by the weight of the cement.

Furthermore, the construction of samples of foam cement with different densities (0.8, 1.0, 1.2, 1.4, and 1.6) g/cc is performed to f

... Show More
View Publication Preview PDF
Crossref