Preferred Language
Articles
/
joe-450
Importance of New Use of Concrete in Iraq Analysis of Development And Use of Concrete in Architecture
...Show More Authors

Since its invention by the Ancient Romans and later developed during the mid-18th century, the concrete structure and finish, has been considered as the most powerful, practical, economic and constructional material that meets the building’s architectural and aesthetical requirements. By creating unique architectural forms, the pioneer architects used concrete widely to shape up their innovative designs and buildings.

The pre-mixed ultra-high performance concrete which manufactured by Lafarge.

The transparent concrete and cement that allow the light beams to pass through them, introduces remarkable well-lit architectural spaces within the same structural criteria. This product is a recyclable, sustainable, friendly environmental and cost efficient back up.

Due to its characteristics, strength, flexibility, affordability and long term performance, the concert integrated and contributed in modern architecture, urbanism and civil developments. Apparently, most of the 20th Century architects employed high-tech concrete method to deliver Iconic and bespoke architectural monuments world-wide. The interaction between the architectural form and the concrete as a buildable, executable, structural and constructional material has been always the main concern for architects over generations.

The formalism in architecture was first identified by the Art-Nouveau movement during the early 20 century in Europe as well as in Northern America. It formed, utilized and sculptured the concert to meet the use, function, aesthetical and spatial needs of spaces. This wave generated series of most significant, outstanding and impressive buildings in the architectural symbolized record.

This was followed by the Brutalism architecture presented by Alison and Peter Smithson in England and also by Le Corbusier works in Marseille and India. However, Alvar Alto and Louis Khan have participated and established a tremendous use of concrete to erect public interest developments on the same era

The concert as a structural element dominated the Metabolism architecture that represented by the Japanese architects like Kiyonori Kikutake, Kisho Kurokawa, Noboru Kawazoe, Masato Otakaand and Fumihiko Maki. They visualized the city of the future to be viable, evaluable, expandable, flexible structures that evoked the processes of organic growth as it is in nature. Their developments are often called technocratic and described as avant-garde with a rhetorical character. The Metabolist mega structures heavily relied on advanced technology and adaptable plug-in building techniques in using this material.

The research concluded the influences of the concrete as a building material upon the modern and building forms from the outsets. By exploring the history of the material, expanding its characteristics and specifications and later demonstrating the modern architecture movements and architects, this research has achieved its targets to acknowledge the importance of concrete in the current construction market and architectural developments.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 07 2022
Journal Name
Materials
Impact Behavior of Composite Reinforced Concrete Beams with Pultruded I-GFRP Beam
...Show More Authors

Publication Date
Mon Oct 21 2019
Journal Name
Civil Engineering Journal
Non-Smooth Behavior of Reinforced Concrete Beam Using Extended Finite Element Method
...Show More Authors

Flexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams w

... Show More
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Structural Behavior of Reinforced Concrete Hollow Beams under Partial Uniformly Distributed Load
...Show More Authors

A Longitudinal opening is used to construct hollow core beam is a cast in site or precast or pre stressed concrete member with continuous voids provided to reduce weight, cost and, as a side benefit, to use for concealed electrical or mechanical runs. Primarily is used as floor beams or roof deck systems. This study investigate the behavior of six beams (solid or with opening) of dimension (length 1000 x height 180 x width120mm) simply support under partial uniformly distributed load, four of these beam contain long opening of varied section (40x40mm) or (80x40mm). The effect of vertical steel reinforcing, opening size and orientations are investigated to evaluate the response of beams. The experimental behavior based on load-deflection

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Tue Sep 01 2009
Journal Name
Journal Of Engineering
Experimental Investigation of Reinforced Concrete Flexural Beams Strengthened or Repaired with CFRP
...Show More Authors

Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Flexural Behavior of Reinforced Concrete Beams Reinforced with 3D-Textile Composite Fiber
...Show More Authors

Normal concrete is weak against tensile strength, has low ductility, and also insignificant resistance to cracking. The addition of diverse types of fibers at specific proportions can enhance the mechanical properties as well as the durability of concrete. Discrete fiber commonly used, has many disadvantages such as balling the fiber, randomly distribution, and limitation of the Vf ratio used. Based on this vision, a new technic was discovered enhancing concrete by textile-fiber to avoid all the problems mentioned above. The main idea of this paper is the investigation of the mechanical properties of SCC, and SCM that cast with 3D AR-glass fabric having two different thicknesses (6, 10 mm), and different layers (1,2 laye

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 01 2025
Journal Name
Civil Engineering Journal
Study on Shear Behavior of Reinforced Concrete Beams Confined with Reinforcing Meshes
...Show More Authors

This study reveals the results of a numerical simulation performed using the ABAQUS/CAE finite element program. The study aimed to provide a simulation model that can forecast the shear behavior of reinforced concrete beams confined with reinforcing meshes. Limited numerical studies have been conducted using geogrid or FRP mesh as shear reinforcement, with limited representation accuracy and limited material quality. The results were compared to published experimental findings in the literature. The finding of the finite element model and the experimental results were highly comparable; consequently, the model was determined to be valid. Following this, the domain of numerical analyses was broadened to include the investigation of m

... Show More
View Publication
Crossref
Publication Date
Wed Oct 09 2019
Journal Name
Engineering, Technology & Applied Science Research
Serviceability of Reinforced Concrete Gable Roof Beams with Openings under Static Loads
...Show More Authors

This paper presents an analytical study on the serviceability of reinforced concrete gable roof beams with openings of different sizes, based on an experimental study which includes 13 concrete gable roof beams with openings under static loading. For deflection and crack widths under static loading at service stage, a developed unified calculation procedure has been submitted, which includes prismatic beams with one opening subjected to flexure concentrated force. The deflection has been calculated with two methods: the first method calculated deflections via relevant equations and the second was Direct Stiffness Method in which the beam is treated as a structural member with several segments constituting the portions with solid sec

... Show More
View Publication Preview PDF
Crossref (17)
Crossref
Publication Date
Fri Jan 07 2022
Journal Name
Materials
Impact Behavior of Composite Reinforced Concrete Beams with Pultruded I-GFRP Beam
...Show More Authors

The present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the m

... Show More
View Publication
Scopus (21)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Thu Mar 10 2022
Journal Name
Buildings
Behavior of One-Way Reinforced Concrete Slabs with Polystyrene Embedded Arched Blocks
...Show More Authors

This study presents experimental and numerical investigations on seven one-way, reinforced concrete (RC) slabs with a new technique of slab weight reduction using polystyrene-embedded arched blocks (PEABs). All slabs had the same dimensions, steel reinforcement, and concrete compressive strength. One of these slabs was a solid slab, which was taken as a control slab, while the other six slabs were cast with PEABs. The main variables were the ratio of the length of the PEABs to the length of the slab (lp/L) and the ratio of the height of the PEABs to the total slab depth (hP/H). The minimum decrease in the ultimate load capacity was about 6% with a minimum reduction in the slab weight of 15%. In contrast, the maximum decrease in the

... Show More
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Strengthening of Reinforced Concrete T- Section Beams Using External Post-Tensioning Technique
...Show More Authors

This research is carried out to investigate the externally post-tensioning technique for strengthening RC beams. In this research, four T-section  RC beams having the same dimensions and material properties were casted and tested up to failure by applying two mid-third concentrated loads. Three of these beams are strengthened by using external tendons, while the remaining beam is kept without strengthening as a control beam. Two external strands of 12 mm diameter were fixed at each side of the web of the strengthened beams and located at depth of 200 mm from top fiber of the section (dps). So that the depth of strands to overall depth of the section ratio (dps

... Show More
View Publication Preview PDF