Preferred Language
Articles
/
joe-44
Experimental Study on Heat Transfer and Friction Factor Characteristics of Single Layer Graphene Based DI-water Nanofluid in a Circular Tube under Laminar Flow and Different Heat Fluxes as Boundary Conditions
...Show More Authors

An experimental study was performed to estimate the forced convection heat transfer performance and the pressure drop of a single layer graphene (GNPs) based DI-water nanofluid in a circular tube under a laminar flow and a uniform heat flux boundary conditions. The viscosity and thermal conductivity of nanofluid at weight concentrations of (0.1 to 1 wt%) were measured. The effects of the velocity of flow, heat flux and nanoparticle weight concentrations on the  enhancement of the heat transfer are examined. The Nusselt number of the GNPs nanofluid was enhanced as the heat flux and the velocity of flow rate  increased, and the maximum Nusselt number  ratio (Nu nanofluid/ Nu base fluid)   and thermal performance factor was (1.45) and (1.24) respectively, by using (1wt%) concentration and q=6104W/m2  heat flux. Finally, an analysis of the thermal performance factor shows that the GNPs nanofluids could work as a good alternative conventional working fluid in thermal heat transfer applications. 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Aug 07 2022
Journal Name
Nanomaterials
Efficient Heat Transfer Augmentation in Channels with Semicircle Ribs and Hybrid Al2O3-Cu/Water Nanofluids
...Show More Authors

Global technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid “Al2O3-Cu/water” nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simu

... Show More
View Publication
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Effect of Solid Particle Properties on Heat Transfer and Pressure Drop in Packed Duct
...Show More Authors

This work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon) with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon), four particle diameters (1, 3, 5 and 7 cm), inlet velocity ( 0.07, 0.19 and 0.32 m/s) and constant heat flux ( 1000, 2000 and 3000 W/ m 2) were investigated. Results showed that heat transfer (average Nusselt number Nuav) increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Propulsion And Power Research
Heat transfer enhancement from heat sources using optimal design of combined fins heat-sinks
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Parametric Study of Mixed Convective Radiative Heat Transfer in an Inclined Annulus
...Show More Authors

The steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortran

... Show More
Publication Date
Tue Jan 01 2019
Wide-range tunable subwavelength band-stop filter for the far-infrared wavelengths based on single-layer graphene sheet
...Show More Authors

Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Mar 31 2020
Journal Name
International Journal Of Heat And Technology
Enhancement of Natural Convection Heat Transfer of Hybrid Design Heat Sink
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
Comparison of Properties of Various Heat Storage Fluids used with Evacuated Tube of Solar Water Heater
...Show More Authors

The aim of this work was to capture solar radiation and convert it into solar thermal energy by using a storage material and the heat transfer fluid like oil and water and comparison between them, we used the evacuated tube as a receiver for solar radiation, The results showed that the oil better than water as storage material and the heat transfer fluid and the effective thermal conductivity material and good for power level, rates and durations of charge and discharge cycles.

View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Entransy dissipation of Shell and Double Concentric Tube Heat Exchanger Calculations and Analysis
...Show More Authors

Shell-and-double concentric tube heat exchanger is one of the new designs that enhance the heat transfer process. Entransy dissipation is a recent development that incorporates thermodynamics in the design and optimization of heat exchangers. In this paper the concept of entransy dissipation is related to the shell-and-double concentric tube heat exchanger for the first time, where the experiments were conducted using hot oil with temperature of 80, 100 and 120°C, flow rate of cold water was 0.667, 1, and 1.334 kg/m3 respectively and the temperature of inlet cold water was 20°C. The entransy dissipation rate due to heat transfer and to fluid friction or pressure drop was studied.

 

View Publication Preview PDF
Publication Date
Thu Oct 21 2021
Journal Name
Physical Review E
Lattice Boltzmann method with moment-based boundary conditions for rarefied flow in the slip regime
...Show More Authors

View Publication
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sat Jun 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Predicting of Temperature Distribution in Direct Contact Heat Transfer
...Show More Authors

An experimental and theoretical investigation of three phase direct contact heat transfer by evaporation of refrigerant drops in an immiscible liquid has been carried out. Refrigerant Rl2 and R134a were used for the dispersed phase, while water and brine were the immiscible continuous phase. A numerical analysis is presented to predict the temperature distribution throughout the circular test column radially and axially is achieved. Experimental measurements of the temperature distribution have been compared with the numerical results and are discussed .A comparison between the experimental and theoretical results showed acceptable agreement and applicability of the derived equations. Comparison with other related work showed similar beh

... Show More
View Publication Preview PDF