Preferred Language
Articles
/
joe-442
Data Aggregation in Wireless Sensor Networks Using Modified Voronoi Fuzzy Clustering Algorithm
...Show More Authors

Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which lead to extend the network lifetime and reduce the traffic that may be accrue in the buffer of sink node. Each cluster head collected data from its members and forwards it to the sink node. A comparative study between modified VFCA and LEACH protocol is implemented in this paper and shows that the modified VFCA is more efficient than LEACH protocol in terms of network lifetime and average energy consumption. Another comparative study between modified VFCA and K-Means clustering algorithm is presented and shows that the modified VFCA is more efficient than K-Means clustering algorithm in terms of  packets transmitted to sink node, buffer utilization, packet loss values and running time. A simulation process is developed and tested using Matlab R2010a program in a computer having the following properties: windows 7 (32-bit operating system), core i7, RAM 4GB, hard 1TB.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Digital Image Authentication Algorithm Based on Fragile Invisible Watermark and MD-5 Function in the DWT Domain
...Show More Authors

Using watermarking techniques and digital signatures can better solve the problems of digital images transmitted on the Internet like forgery, tampering, altering, etc. In this paper we proposed invisible fragile watermark and MD-5 based algorithm for digital image authenticating and tampers detecting in the Discrete Wavelet Transform DWT domain. The digital image is decomposed using 2-level DWT and the middle and high frequency sub-bands are used for watermark and digital signature embedding. The authentication data are embedded in number of the coefficients of these sub-bands according to the adaptive threshold based on the watermark length and the coefficients of each DWT level. These sub-bands are used because they a

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Engineering
A Proposed Adaptive Bitrate Scheme Based on Bandwidth Prediction Algorithm for Smoothly Video Streaming
...Show More Authors

A robust video-bitrate adaptive scheme at client-aspect plays a significant role in keeping a good quality of video streaming technology experience. Video quality affects the amount of time the video has turned off playing due to the unfilled buffer state. Therefore to maintain a video streaming continuously with smooth bandwidth fluctuation, a video buffer structure based on adapting the video bitrate is considered in this work. Initially, the video buffer structure is formulated as an optimal control-theoretic problem that combines both video bitrate and video buffer feedback signals. While protecting the video buffer occupancy from exceeding the limited operating level can provide continuous video str

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Normalize and De-Normalize of Relative Permeability Data for Mishrif Formation in WQ1: An Experimental Work
...Show More Authors

In many oil-recovery systems, relative permeabilities (kr) are essential flow factors that affect fluid dispersion and output from petroleum resources. Traditionally, taking rock samples from the reservoir and performing suitable laboratory studies is required to get these crucial reservoir properties. Despite the fact that kr is a function of fluid saturation, it is now well established that pore shape and distribution, absolute permeability, wettability, interfacial tension (IFT), and saturation history all influence kr values. These rock/fluid characteristics vary greatly from one reservoir region to the next, and it would be impossible to make kr measurements in all of them. The unsteady-state approach was used to calculate the relat

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Oct 08 2002
Journal Name
Iraqi Journal Of Laser
Design Considerations of Laser Source in a Ring Network Based on Fiber Distributed Data Interface (FDDI)
...Show More Authors

This work presents the use of laser diode in the fiber distributed data interface FDDI networks. FDDI uses optical fiber as a transmission media. This solves the problems resulted from the EMI, and noise. In addition it increases the security of transmission. A network with a ring topology consists of three computers was designed and implemented. The timed token protocol was used to achieve and control the process of communication over the ring. Nonreturn to zero inversion (NRZI) modulation was carried out as a part of the physical (PHY) sublayer. The optical system consists of a laser diode with wavelength of 820 nm and 2.5 mW maximum output power as a source, optical fiber as a channel, and positive intrinsic negative (PIN) photodiode

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
A Study on Transportation Models in Their Minimum and Maximum Values with Applications of Real Data
...Show More Authors

The purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Business, Communication & Technology
Exploring the Adoption of Big Data Analytics in the Oil and Gas Industry: A Case Study
...Show More Authors

The oil and gas industry relies heavily on IT innovations to manage business processes, but the exponential generation of data has led to concerns about processing big data, generating valuable insights, and making timely decisions. Many companies have adopted Big Data Analytics (BDA) solutions to address these challenges. However, determining the adoption of BDA solutions requires a thorough understanding of the contextual factors influencing these decisions. This research explores these factors using a new Technology-Organisation-Environment (TOE) framework, presenting technological, organisational, and environmental factors. The study used a Delphi research method and seven heterogeneous panelists from an Oman oil and gas company

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Semi parametric Estimators for Quantile Model via LASSO and SCAD with Missing Data
...Show More Authors

In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method

View Publication Preview PDF
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Spe Europec Featured At 81st Eage Conference And Exhibition
Development of Artificial Neural Networks and Multiple Regression Analysis for Estimating of Formation Permeability
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref