In recent years and decades, there is a great need for developing new alternative energy sources or renewable sustainable energy. On the other hand, new technology approaches are growing . towards benefits from the valuable nutrients in wastewater which are unrecoverable by traditional wastewater treatment processes. In the current study, a novel integrated system of microbial fuel cell and anoxic bioreactor (MFC-ANB) was designed and constructed to investigate its potential for slaughterhouses wastewater treatment, nitrogen recovery, and power generation. The system consisted of a double-chamber tubular type MFC with biocathode inoculated with freshly collected activated sludge. The MFC-ANB system was continuously fed with real-field slaughterhouse wastewater, with initial concentrations of COD and ammonium were 990 mg/L and 200 mg-N/L, respectively. The MFC-ANB system was operated for a total period of 43 days. Maximum removal efficiencies of COD, ammonium, nitrate, nitrogen recovery, Columbic efficiency, and power generation were 99%, 99.3%, 100%, 100%, 13.37% and 162.22 mW/m2 , respectively.
An approach for hiding information has been proposed for securing information using Slanlet transform and the T-codes. Same as the wavelet transform the Slantlet transform is better in compression signal and good time localization signal compression than the conventional transforms like (DCT) discrete cosine transforms. The proposed method provides efficient security, because the original secret image is encrypted before embedding in order to build a robust system that is no attacker can defeat it. Some of the well known fidelity measures like (PSNR and AR) were used to measure the quality of the Steganography image and the image after extracted. The results show that the stego-image is closed related to the cover image, with (PSNR) Peak Si
... Show MoreIn this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible po
... Show MoreSilver Indium Aluminum Selenium AgIn1xAlxSe2 AIAS for x=01 thin films was deposited by thermal evaporation at RT and different︣︢︡ ︠︣1thickness 100 150 and 200 nm on the glass Substrate and p2Si wafer to produce AIAS/p3Si heterojunctionsolarcell4 Structural optical electrical and photovoltaicproperties6 are investigated for the samples XRD analysis reveals that all the deposited AIAS films show polycrystalline structure without any change due to increase of thickness Average diameter and roughness calculated from AFM images shows an increase in its value with increasing thickness The optical absorbance and transmittance for samples are measured using a spectrometer type UV Visible 1800 spectra1photometer to study the energy6gap The
... Show MoreThe cytotoxic effect of catechol was examined in two human cancer cell lines, Epidermoid larynx carcinoma (Hep- 2), Cerebral glioblastoma multiforme (AMGM-5) and Murine mammary adenocarcinomacell (AMN3) treated with half concentrations of catechol (1000, 500, 250, 125, 62.5 and 32.25 μM) for 72 hr. The get hold of results showed catechol have a toxic effect of the cell viability of three types of cell lines after 72h of exposure, the toxicity was dependent on catechol concentrations and/or autoxidation for quinines formation, there were a marked decreased of cell viability in a dose dependent manner in all cell line types. Inhibition concentration of catechol for 50% of cell viability (IC50) were calculated, they were at 581.5 μM, 478 μM
... Show MoreIn this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current densi
... Show MoreIn this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current density (C
... Show More