Preferred Language
Articles
/
joe-433
Resistance to Moisture Damage of Recycled Asphalt Concrete Pavement
...Show More Authors

Recycled asphalt concrete mixture are prepared, artificially aged and processed in the laboratory to maintain the homogeneity of recycled asphalt concrete mixture gradation, and bitumen content. The loose asphalt concrete mix was subjected to cycle of accelerated aging, (short –term aging) and the compacted mix was subjected to (long -term aging) as per Super-pave procedure. Twenty four Specimens were constructed at optimum asphalt content according to Marshall Method. Recycled mixture was prepared from aged asphalt concrete using recycling agent (soft asphalt cement blended with silica fumes) by (1.5%) weight of mixture as recycling agent content. The effect of recycling agent on aging after recycling process behavior of asphalt concrete was determine. Aged specimens after recycling process were prepared by subjecting the recycled asphalt concrete to accelerated aging and tested for resistance to moisture damage. The improvement in the resistance to moisture damage of aged mixture after recycling with (soft asphalt cement blended with silica fumes) was 76.17% as compared to the corresponding aged mixture before recycling process. The ITS for unconditioned specimens for aged after recycling process mixture was less than reference by 67.1%, and less than that of aged before recycling process mixtures by 64.1%.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Flexural Behavior of Reinforced Concrete Beams Reinforced with 3D-Textile Composite Fiber
...Show More Authors

Normal concrete is weak against tensile strength, has low ductility, and also insignificant resistance to cracking. The addition of diverse types of fibers at specific proportions can enhance the mechanical properties as well as the durability of concrete. Discrete fiber commonly used, has many disadvantages such as balling the fiber, randomly distribution, and limitation of the Vf ratio used. Based on this vision, a new technic was discovered enhancing concrete by textile-fiber to avoid all the problems mentioned above. The main idea of this paper is the investigation of the mechanical properties of SCC, and SCM that cast with 3D AR-glass fabric having two different thicknesses (6, 10 mm), and different layers (1,2 laye

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2009
Journal Name
Journal Of Engineering
Experimental Investigation of Reinforced Concrete Flexural Beams Strengthened or Repaired with CFRP
...Show More Authors

Publication Date
Sun Jan 01 2017
Journal Name
Advances In Civil Engineering
Behavior of Strengthened Composite Prestressed Concrete Girders under Static and Repeated Loading
...Show More Authors

The use of external posttensioning technique for strengthening reinforced concrete girders has been considerably studied by many researchers worldwide. However, no available data are seen regarding strengthening full-scale composite prestressed concrete girders with external posttensioned technique under static and repeated loading. In this research, four full-scale composite prestressed I-shape girders of 16 m span were fabricated and tested under static and repeated loading up to failure. Accordingly, two girders were externally strengthened with posttensioned strands, while the other two girders were left without strengthening. The experimental tests include deflection, cracking load, ultimate strength and strains at midspan, a

... Show More
Crossref (6)
Clarivate Crossref
Publication Date
Fri Jan 07 2022
Journal Name
Materials
Impact Behavior of Composite Reinforced Concrete Beams with Pultruded I-GFRP Beam
...Show More Authors

The present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the m

... Show More
View Publication
Crossref (11)
Clarivate Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Journal Of Engineering
Numerical Prediction of Bond-Slip Behavior in Simple Pull-out Concrete Specimen
...Show More Authors

In this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of this

... Show More
Publication Date
Tue Mar 31 2020
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Extended Finite Element Analysis of Reinforced Concrete Beams Using Meso-Scale Modeling
...Show More Authors

Four simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to lo

... Show More
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Structural performance of fiber-reinforced lightweight concrete slabs with expanded clay aggregate
...Show More Authors

Crossref (1)
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Iop Conf. Series: Materials Science And Engineering
Enhancing the mechanical properties of lightweight concrete using mono and hybrid fibers
...Show More Authors
Abstract<p>This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G</p> ... Show More
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Strengthening of Reinforced Concrete T- Section Beams Using External Post-Tensioning Technique
...Show More Authors

This research is carried out to investigate the externally post-tensioning technique for strengthening RC beams. In this research, four T-section  RC beams having the same dimensions and material properties were casted and tested up to failure by applying two mid-third concentrated loads. Three of these beams are strengthened by using external tendons, while the remaining beam is kept without strengthening as a control beam. Two external strands of 12 mm diameter were fixed at each side of the web of the strengthened beams and located at depth of 200 mm from top fiber of the section (dps). So that the depth of strands to overall depth of the section ratio (dps

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 15 2017
Journal Name
School Of Engineering
Development of novel demountable shear connectors for precast steel-concrete composite bridges
...Show More Authors

Two novel demountable shear connectors for precast steel-concrete composite bridges are presented. The connectors use high-strength steel bolts, which are fastened to the steel beam with the aid of a special locking configuration that prevents slip of bolts within their holes. Moreover, the connectors promote accelerated construction and overcome typical construction tolerances issues of precast structures. Most importantly, the connectors allow bridge disassembly, and therefore, can address different bridge deterioration scenarios with minimum disturbance to traffic flow, i.e. (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (3) steel beams can be replaced, while precast

... Show More
View Publication Preview PDF