Preferred Language
Articles
/
joe-420
Artificial Neural Networks Modeling of Total Dissolved Solid in the Selected Locations on Tigris River, Iraq
...Show More Authors

The study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge have the most significant affect on the predicted TDS concentrations. The results showed that a network with (8) hidden neurons was highly accurate in predicting TDS concentration. The correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE) between measured data and model outputs were calculated as 0.975, 113.9 and 11.51%, respectively for testing data sets. Comparisons between final results of ANNs and multiple linear regressions (MLR) showed that the ANNs model could be successfully applied and provides high accuracy to predict TDS concentrations as a water quality parameter.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Sep 06 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

Scopus (1)
Scopus
Publication Date
Mon Dec 02 2024
Journal Name
Engineering, Technology & Applied Science Research
An Artificial Neural Network Prediction Model of GFRP Residual Tensile Strength
...Show More Authors

This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Comparison between Linear and Non-linear ANN Models for Predicting Water Quality Parameters at Tigris River
...Show More Authors

In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Mar 20 2025
Journal Name
Journal Of Applied And Natural Science
Isolation and identification of pathogenic bacteria from drinking tap water and Tigris River water sources in Baghdad
...Show More Authors

Water is a resource and a crucial aspect of living and surviving. In Iraq, the Tigris River is one of the most critical water sources. The present study aimed to provide an insight analysis of some water quality parameters including the microbial content of drinkable tap water and river water. Ten Water samples (T1- T10) in triplicate were collected from sampling sites -Site I (Tap water) from home water taps, supplied by the Water Filtration Station/ Al Karama Project/ Al-Karkh> 10 from Site II (R1- R10)River water from Tigris River (around or near the Water Filtration Station/ Al Karama Project) every week (from September to half of November 2022), then were immediately placed in sterile bottles and transported to Microbiolo

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Artificial neural network model for predicting the desulfurization efficiency of Al-Ahdab crude oil
...Show More Authors

View Publication Preview PDF
Scopus (11)
Crossref (10)
Scopus Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Artificial Neural Network Model for Wastewater Projects Maintenance Management Plan
...Show More Authors

Wastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Nov 05 2025
Journal Name
Iraqi Journal Of Science
MONITORING HEAVY METALS, CATIONS AND ANIONS LEVELS ANDITS POSSIBLE HEALTH RISKS IN TIGRIS RIVER AT BAGHDADREGION
...Show More Authors

Various heavy metals, cations and anions of the Tigris River water in Baghdad regionwere studied during the winter, spring, summer and autumn of 2009, for 4 samplingsites. In the present investigation the levels of studied heavy metals, cations and anionswere found in the range of (0.011-0.333 mg/L) for As, in the water samples(undetectable-0.0043 mg/L) for Sb,( 0.011-0.080 mg/L) for Ti, (0.150-0.730 mg/L) forV, (0.01-1.06 mg/L) for Fe, (0.1-0.4 mg/L) for Zn, (0.011-0.15 mg/L) for Pb, (0.01-0.05mg/L) for Cd, (0.01-0.04 mg/L) for Ni, (50-290 mg/L) for Ca, (97-270 mg/L) for Mg,(0.65-1.74 mg/L) for K, (11-38.33) for Na, (35-113 mg/L) for Cl, (150-256 mg/L) forHCO3, (96-479 mg/L) for SO4, (0.93-3.9 mg/L) for NO3 and (undetectable - 0.360 mg/L)f

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
MODELING DEATH RATE OF THE COVID-19 PANDEMIC IN IRAQ
...Show More Authors

View Publication Preview PDF
Scopus