The study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge have the most significant affect on the predicted TDS concentrations. The results showed that a network with (8) hidden neurons was highly accurate in predicting TDS concentration. The correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE) between measured data and model outputs were calculated as 0.975, 113.9 and 11.51%, respectively for testing data sets. Comparisons between final results of ANNs and multiple linear regressions (MLR) showed that the ANNs model could be successfully applied and provides high accuracy to predict TDS concentrations as a water quality parameter.
In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
Recently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua
... Show MoreWater is a resource and a crucial aspect of living and surviving. In Iraq, the Tigris River is one of the most critical water sources. The present study aimed to provide an insight analysis of some water quality parameters including the microbial content of drinkable tap water and river water. Ten Water samples (T1- T10) in triplicate were collected from sampling sites -Site I (Tap water) from home water taps, supplied by the Water Filtration Station/ Al Karama Project/ Al-Karkh> 10 from Site II (R1- R10)River water from Tigris River (around or near the Water Filtration Station/ Al Karama Project) every week (from September to half of November 2022), then were immediately placed in sterile bottles and transported to Microbiolo
... Show MoreVarious heavy metals, cations and anions of the Tigris River water in Baghdad regionwere studied during the winter, spring, summer and autumn of 2009, for 4 samplingsites. In the present investigation the levels of studied heavy metals, cations and anionswere found in the range of (0.011-0.333 mg/L) for As, in the water samples(undetectable-0.0043 mg/L) for Sb,( 0.011-0.080 mg/L) for Ti, (0.150-0.730 mg/L) forV, (0.01-1.06 mg/L) for Fe, (0.1-0.4 mg/L) for Zn, (0.011-0.15 mg/L) for Pb, (0.01-0.05mg/L) for Cd, (0.01-0.04 mg/L) for Ni, (50-290 mg/L) for Ca, (97-270 mg/L) for Mg,(0.65-1.74 mg/L) for K, (11-38.33) for Na, (35-113 mg/L) for Cl, (150-256 mg/L) forHCO3, (96-479 mg/L) for SO4, (0.93-3.9 mg/L) for NO3 and (undetectable - 0.360 mg/L)f
... Show MoreIn this study, the water treatment plants located on the Tigris River within Baghdad city were subjected to qualitative and quantitative assessments. Based on location, the plants from upstream to downstream are Al-Karkh, East Tigris, Al-Karamah, Al-Wathbah, Al-Wehdah, Al-Kadiseyah, Al-Dora, and Al-Rashid. Data from 2009 to 2020 on the turbidity, total dissolved solids, Alkalinity, hardness, chloride, calcium, and temperature were used in the qualitative assessment while data on the treated water production and population served were used in the quantitative assessment. The above Data was acquired from the Municipality of Baghdad. The turbidity was mainly used as a fair gauge to assess the performance of the water treatment plants in Baghda
... Show MoreNovel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show More